Parkinson's disease (PD) is marked by neurodegeneration that follows the destruction of dopaminergic neurons, mainly localized to the substantia nigra. It results in debilitating motor as well as non-motor symptoms. The current study investigated the neuroprotective potential of emodin, a naturally occurring anthraquinone derivative, in a well-established model of PD in mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The key focus is the Nrf2 signaling pathway, the major defense mechanism of the cells against oxidative damage and neuroinflammation, both exacerbated in the pathology of PD. Using molecular docking, the binding affinity of emodin to Nrf2 was predicted, revealing strong interactions that suggest emodin's potential to activate Nrf2. Subsequently, in vivo experiments were conducted where MPTP-induced PD mice were treated with emodin, and additional groups received Nrf2 modulators: dimethyl fumarate (DMF) as an agonist and all-trans retinoic acid (ATRA) as an antagonist. Emodin treatment led to a significant upregulation of Nrf2 expression, a reduction in oxidative stress markers such as malondialdehyde, and notable improvements in motor and cognitive behavior. DMF co-administration enhanced emodin's neuroprotective effects, whereas ATRA diminished them, highlighting the central role of Nrf2. These findings suggest that emodin effectively targets PD pathology via the Nrf2 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-025-04762-3 | DOI Listing |
J Agric Food Chem
March 2025
Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China.
Chronic exposure to arsenic (As), a ubiquitous contaminant, poses deleterious health risks to humans, including cardiovascular disease. Recent studies have implicated ferroptosis, in which the essential micronutrient selenium (Se) plays a crucial role, in several As-induced pathological processes. However, whether Se can counteract As-induced endothelial dysfunction through ferroptosis remains unclear.
View Article and Find Full Text PDFCell Prolif
March 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Glioblastoma multiforme (GBM) is the deadliest brain tumour with an extremely poor prognosis. Tryptophan catabolism could enhance an array of protumour-genic signals and promoted tumour progression in GBM. However, the mechanisms of oncogenic signalling under tryptophan catabolism and potential therapy targeting this pathway have not been completely understood.
View Article and Find Full Text PDFJ Cosmet Dermatol
March 2025
R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, P. R. China.
Objective: Oxidative stress activates the reactive oxygen species (ROS) and excessive ROS can damage skin cells, initiating oxidative stress responses that contribute to inflammation, aging, and other skin issues. As a resident skin bacterium, Cutibacterium acnes (C. acnes) plays an important role in maintaining skin homeostasis and provides antioxidant benefits.
View Article and Find Full Text PDFCirculation
March 2025
Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.).
Background: Cardiac β3-adrenergic receptors (ARs) are upregulated in diseased hearts and mediate antithetic effects to those of β1AR and β2AR. β3AR agonists were recently shown to protect against myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. However, the underlying mechanisms remain elusive.
View Article and Find Full Text PDFMater Today Bio
April 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
Diabetic infected bone defect remains a great challenge in clinical practice, with delayed healing characterized by bacterial infection and cellular disfunction caused by oxidative stress. Hence, a novel self-healing multifunctional Ag@PEG-4OI/EXO hydrogel is introduced for improving healing of diabetic infected bone defect. 4-octyl itaconate, a derivative of the metabolite itaconate, has been proved that which performs antioxidant and mitochondria-protected properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!