Coordinated initiation of DNA replication is essential to ensure efficient and timely DNA synthesis. Yet, molecular mechanism describing how replication initiation is coordinated in eukaryotic cells is not completely understood. Herein, we present data demonstrating a novel feature of RNAs transcribed in the proximity of actively replicating gene loci. We show that RNs ahoring C1 () to the histone variant H2A.Z are licensors of the DNA replication process. This -H2A.Z interaction is essential for cells to initiate duplication of their genetic material. Widespread and -specific perturbations of these transcripts correlate with anomalous replication patterns and a notable loss of the H2A.Z replicative marker at the origin site. Collectively, we present a previously undescribed RNA-mediated mechanism that is associated with the generation of active replication origins in eukaryotic cells. Our findings delineate a strategy to modulate the origins of replication in human cells at a local and global level, with potentially broad biomedical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838740PMC
http://dx.doi.org/10.21203/rs.3.rs-5723221/v1DOI Listing

Publication Analysis

Top Keywords

dna replication
12
replication
8
eukaryotic cells
8
rnas anchoring
4
anchoring replication
4
replication complex
4
complex control
4
control initiation
4
initiation firing
4
dna
4

Similar Publications

Interplay of replication timing, DNA repair, and translesion synthesis in UV mutagenesis in yeast.

Nucleus

December 2025

School of Molecular Biosciences, Biotechnology Life Sciences, Washington State University, Pullman, WA, USA.

Replication timing during S-phase impacts mutation rates in yeast and human cancers; however, the exact mechanism involved remains unclear. Here, we analyze the impact of replication timing on UV mutagenesis in . Our analysis indicates that UV mutations are enriched in early-replicating regions of the genome in wild-type cells, but in cells deficient in global genomic-nucleotide excision repair (GG-NER), mutations are enriched in late-replicating regions.

View Article and Find Full Text PDF

Induction of translation-suppressive G3BP1 stress granules and interferon-signaling cGAS condensates by transfected plasmid DNA.

Hlife

January 2025

Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Maryland, USA.

Plasmid DNA transfection is one of the fundamental tools of biomedical research. Here, we found that plasmid DNA transfection mediated by liposomes activates multiple innate immune responses in several widely used cell lines. Their activations were visible by detection of stress granules (SG) and cGAS-DNA condensates (cGC) in the transfected cells in a plasmid DNA dose-dependent manner.

View Article and Find Full Text PDF

: Ultraviolet B (UV-B) is a significant risk factor for skin damage, as it induces cyclobutane pyrimidine dimers (CPD), which suppress DNA replication and transcription. Photolyase (PHR) is a blue light-dependent enzyme that repairs DNA damage caused by UV irradiation. While it is absent in human, it plays a crucial role in repairing CPD in other organisms.

View Article and Find Full Text PDF

Cancer remains a leading cause of death worldwide, highlighting the urgent need for novel and more effective treatments. Natural products, with their structural diversity, represent a valuable source for the discovery of anticancer compounds. In this study, we screened 750 Antarctic extracts to identify potential inhibitors of human topoisomerase 1 (hTOP1), a key enzyme in DNA replication and repair, and a target of cancer therapies.

View Article and Find Full Text PDF

B-cell lymphoma/leukemia 11B (Bcl11b) plays roles in cell proliferation and apoptosis and holds a pivotal position within the immune system. Our previous studies have demonstrated that Bcl11b can promote cell apoptosis to curb ALV-J infection. To gain insights into the molecular mechanisms underlying expression regulation in chickens, we constructed various truncated dual luciferase reporter vectors and analyzed the promoter region of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!