Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanophotonics
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Published: February 2025
Optical encryption offers a powerful platform for secure information transfer, combining low power consumption, high-speed transmission, and intuitive visualization. Metasurfaces, with their unprecedented ability to manipulate light across multiple degrees of freedom within quasi-two-dimensional nanostructures, are emerging as promising devices for advanced encryption. However, encryption capacity remains constrained by limited information channels. Here, we present a visual secret sharing (VSS) scheme utilizing metasurfaces with multiple polarization-dependent channels and minimized crosstalk. Using a global optimization strategy for nanostructure geometries across the entire metasurface, we successfully realize eight independent polarization channels with negligible crosstalk. By encoding both the key and information into these channels with a modified VSS scheme, we demonstrate the complete recovery of seven plaintexts. This strategy supports scalable, high-capacity encryption, and can incorporate additional optical degrees of freedom, offering advanced solutions for advanced secure communication, information storage, and anti-counterfeiting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834057 | PMC |
http://dx.doi.org/10.1515/nanoph-2024-0746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.