Urban air quality management is dependent on the availability of local air pollution data. In many major urban centers of Africa, there is limited to nonexistent information on air quality. This is gradually changing in part due to the increasing use of micro air sensors, which have the potential to enable the generation of ground-based air quality data at fine scales for understanding local emission trends. Regional literature on the application of high-resolution data for emission source identification in this region is limited. In this study a micro air sensor was colocated at the Physics Department, University of Ghana, with a reference grade instrument to evaluate its performance for estimating PM pollution accurately at fine scales and the value of these data in identification of local sources and their behavior over time. For this study, 15 weeks of data at hourly resolution with approximately 2500 data pairs were generated and analyzed (June 1, 2023, to September 15, 2023). For this time period a coefficient of determination ( ) of 0.83 was generated with a mean absolute error (MAE) of 5.44 μg m between the pre local calibration micro air sensor (i.e., out of the box) and the reference-grade instrument. Following currently accepted best practice methods (see, e.g., PAS4023) a domain specific (i.e., local) calibration factor was generated using a multilinear regression model, and when this factor is applied to the micro air sensor data, a reduction, i.e. improvement, in MAE to 1.43 μg m was found. Daily variation was calculated, a receptor model was applied, and time series plots as a function of wind direction were generated, including PM/PM ratio scatter and count plots, to explore the utility of this observational approach for local source identification. The 3 data sets were compared (out of the box, domain calibrated, and reference-grade) and it was found that although there were variations in the data reported, source areas highlighted based on these data were similar, with input from local sources such as traffic emissions and biomass burning. As the temporal resolution of observational data associated with these micro air sensors is higher than for reference grade instruments (primarily due to costs and logistics limitations), they have the potential to provide insight into the complex, often hyperlocalized sources associated with urban areas, such as those found in major African cities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833764 | PMC |
http://dx.doi.org/10.1021/acsestair.4c00172 | DOI Listing |
Front Bioeng Biotechnol
February 2025
Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States.
Background: Inhalation injuries, caused by exposure to extreme heat and chemical irritants, lead to complications with speaking, swallowing, and breathing. This study investigates the effects of thermal injury and endotracheal tube (ETT) placement on the airway microbiome and inflammatory response. A secondary aim is to assess the impact of localized dexamethasone delivery via a drug-eluting ETT to reduce laryngeal scarring.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
CNRS, LP3 UMR 7341, Aix-Marseille University, 13009 Marseille, France.
This research highlights the different behaviors of titanium (Ti) wires under the action of 500 W and 800 W microwave power levels. Following the interaction between microwaves and a titanium wire placed in the node of the (TM-transverse magnetic mode) waveguide in air at atmospheric pressure, plasma was generated. Using optical emission spectroscopy technique it was observed that during plasma generation at 500 W and 800 W microwaves powers, metallic ions, and gas ions were created, and the plasmas fulfilled the local thermodynamic equilibrium (LTE) conditions.
View Article and Find Full Text PDFAtherosclerosis
March 2025
University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.
Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.
View Article and Find Full Text PDFJ Adv Res
March 2025
Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China. Electronic address:
Introduction: Bone fracture is increasing in patients with type 2 diabetes mellitus (T2DM) due to skeletal fragility. Most antidiabetics are expected to reduce the incidence of fracture in patients with T2DM, however the results are disappointing. Metformin and GLP-1 receptor agonists have a neutral or minor positive effect in reducing fractures.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!