Chemical transport models are used for federal compliance demonstrations when areas are out of attainment, but there is no guidance for choosing a chemical mechanism. With the 2024 change of the annual PM standard and the prevalence of multiday wintertime inversion episodes in the western U.S., understanding the wintertime performance of chemical transport models is important. This study explores the impact of chemical mechanism choice on the Community Multiscale Air Quality (CMAQ) model performance for PM and implications for attainment demonstration in inversion-prone areas in the western United States. Total and speciated PM observations were used to evaluate wintertime CMAQ simulations using four chemical mechanisms. The study evaluated intermechanism differences in total and secondary PM and the impact of meteorology at sites with observed multiday temperature inversions. Model performance for total PM was similar across chemical mechanisms, but intermechanism differences for total and secondary PM were exacerbated during inversion periods, suggesting that modeled chemistry contributes to the model bias. Results suggest that nitrate, ammonium, and organic carbon are secondary species for which model results do not agree or perform to standard evaluation metrics in scientific literature. These findings show a need for mechanistic investigations of the causes of these differences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833766 | PMC |
http://dx.doi.org/10.1021/acsestair.4c00139 | DOI Listing |
Chempluschem
March 2025
Shanghai University, Chemistry, Shangda Road 99, 200444, Shanghai, CHINA.
Electrochemiluminescence (ECL) combines electrochemical redox processes with photochemical light emission, offering exceptional sensitivity, spatial control, and stability. Widely applied in biosensing, medical diagnostics, and environmental monitoring, its efficiency often depends on advanced catalytic materials. Single-atom catalysts (SACs), featuring isolated metal atoms dispersed on a support, have emerged as promising candidates due to their unique electronic structures, high atom utilization, and tunable catalytic properties.
View Article and Find Full Text PDFLangmuir
March 2025
China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Chemistry, and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China.
Research on room temperature phosphorescence (RTP) of metal-organic frameworks (MOFs) has been rapidly developed in recent years. However, it is still challenging to realize long-wavelength RTP (>580 nm). In this article, a new strategy is proposed to achieve the red-shifted RTP through constructing dual-ligand MOFs.
View Article and Find Full Text PDFJ Phys Chem A
March 2025
State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Identifying atomic-level mechanisms in elemental chemical reactions is crucial for understanding complex reaction processes. This study focuses on the typical multichannel H + NHCl reaction, which plays a significant role in environmental science. High-level ab initio calculations determined seven distinct reaction pathways, leading to three product channels: H + NHCl, HCl + NH, and Cl + NH.
View Article and Find Full Text PDFOrg Lett
March 2025
Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.
A novel rearranged C-diterpenoid alkaloid, carmiseconapline A (), featuring a unique 10,20:11,12-di--napelline skeleton with a fused 5/6/5/6/7 pentacyclic ring system, was isolated from Debeaux. Compound exhibited remarkable antidepressive activity, being twice as potent as fluoxetine (10 mg/kg) at 0.06 mg/kg in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!