Recent advancements in genetically encoded calcium indicators, particularly those based on green fluorescent proteins, have optimized their performance for monitoring neuronal activities in a variety of model organisms. However, progress in developing red-shifted GECIs, despite their advantages over green indicators, has been slower, resulting in fewer options for end-users. In this study, we explored topological inversion and soma-targeting strategies, which are complementary to conventional mutagenesis, to re-engineer a red genetically encoded calcium indicator, FRCaMP, for enhanced performance. The resulting sensors, FRCaMPi and soma-targeted FRCaMPi (SomaFRCaMPi), exhibit up to 2-fold higher dynamic range and peak ΔF/F per single AP compared to widely used jRGECO1a in neurons in culture and . Compared to jRGECO1a and FRCaMPi, SomaFRCaMPi reduces erroneous correlation of neuronal activity in the brains of mice and zebrafish by two- to four-fold due to diminished neuropil contamination without compromising the signal-to-noise ratio. Under wide-field imaging in primary somatosensory and visual cortex in mice with high labeling density (80-90%), SomaFRCaMPi exhibits up to 40% higher SNR and decreased artifactual correlation across neurons. Altogether, SomaFRCaMPi improves the accuracy and scale of neuronal activity imaging at single-neuron resolution in densely labeled brain tissues due to a 2-3-fold enhanced automated neuronal segmentation, 50% higher fraction of responsive cells, up to 2-fold higher SNR compared to jRGECO1a. Our findings highlight the potential of SomaFRCaMPi, comparable to the most sensitive soma-targeted GCaMP, for precise spatial recording of neuronal populations using popular imaging modalities in model organisms such as zebrafish and mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838422PMC
http://dx.doi.org/10.1101/2025.01.31.635851DOI Listing

Publication Analysis

Top Keywords

compared jrgeco1a
12
calcium indicator
8
neuronal populations
8
genetically encoded
8
encoded calcium
8
model organisms
8
frcampi somafrcampi
8
2-fold higher
8
neuronal activity
8
higher snr
8

Similar Publications

Recent advancements in genetically encoded calcium indicators, particularly those based on green fluorescent proteins, have optimized their performance for monitoring neuronal activities in a variety of model organisms. However, progress in developing red-shifted GECIs, despite their advantages over green indicators, has been slower, resulting in fewer options for end-users. In this study, we explored topological inversion and soma-targeting strategies, which are complementary to conventional mutagenesis, to re-engineer a red genetically encoded calcium indicator, FRCaMP, for enhanced performance.

View Article and Find Full Text PDF

Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain.

Cell Rep

September 2024

Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA. Electronic address:

Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.

View Article and Find Full Text PDF

Carbon dioxide (CO) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance.

View Article and Find Full Text PDF

Anxious, depressive, traumatic, and other stress-related disorders are associated with large scale brain network functional connectivity changes, yet the relationship between acute stress effects and the emergence of persistent large scale network reorganization is unclear. Using male Thy 1-jRGECO1a transgenic mice, we repeatedly sampled mesoscale cortical calcium activity across dorsal neocortex. First, mice were imaged in a homecage control condition, followed by an acute foot-shock stress, a chronic variable stress protocol, an acute on chronic foot-shock stress, and finally treatment with the prototype rapid acting antidepressant ketamine or vehicle.

View Article and Find Full Text PDF

Background: Genetically encoded calcium indicators (GECIs), especially the GCaMP-based green fluorescence GECIs have been widely used for detection of neuronal activity in rodents by measuring intracellular neuronal Ca changes. More recently, jRGECO1a, a red shifted GECI, has been reported to detect neuronal Ca activation. This opens the possibility of using dual-color GECIs for simultaneous interrogation of different cell populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!