Unlabelled: In COVID-19 patients, respiratory failure was reported due to damage to the respiratory centers of the brainstem. Molecular mimicry of three brainstem pre-Botzinger complex proteins (DAB1, AIFM and SURF1) was regarded as the underlying reason for respiratory failure and the autoimmune neurological sequelae. Of the three brainstem proteins mimicked by SARS CoV-2, corresponding sequences to two of the mimicry peptides were located in the N-protein of SARS CoV-2. N-protein is important for viral RNA synthesis and genome packaging. Here, we have used molecular modeling, docking and MD simulations to discern potential drugs which can inhibit molecular mimicry of DAB1 by SARS CoV-2 and also eliminate it by interfering in genome packaging. The binding site (drug target) for molecular docking was defined as the amino acid sequence extending from position 168-185 of the N-protein which was a SLiM region and also included the mimicry hexapeptide. Molecular docking after MD simulations was used to discern probable inhibitors of the drug-target from FDA-approved neurological drugs in the Broad Institute's Drug Repurposing Hub. Our results revealed that an anti-anxiety drug afobazole qualified the ADMET parameters, formed a stable complex with the drug-target and exhibited the highest binding energy (-88.21 kJ/mol). This suggests that afobazole can be repurposed against SARS CoV-2 for disrupting molecular mimicry of human DAB1 protein and also eliminate the etiopathological agent by interfering in viral genome packaging.
Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-025-00316-6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832858 | PMC |
http://dx.doi.org/10.1007/s40203-025-00316-6 | DOI Listing |
Ann Med
December 2025
Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China.
Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.
Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.
Rev Med Virol
March 2025
Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA.
SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.
View Article and Find Full Text PDFVaccine
March 2025
Robert Koch Institute, Am Nordufer 20, 13353 Berlin, Germany. Electronic address:
Introduction: As of 24 October 2021, 128,868 laboratory-confirmed COVID-19 cases and 3550 deaths were reported from Namibia. The national COVID-19 vaccination campaign that started in March 2021 included health workers (HWs) as a priority group. The vaccines most administered were Sinopharm, AstraZeneca, Pfizer-BioNtech, and Janssen.
View Article and Find Full Text PDFTrop Med Int Health
March 2025
UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
Background: To demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.
Methods: Using data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.
Results: Spatial patterns in population immunity to SARS-CoV-2 varied across the DR.
J Genet Eng Biotechnol
March 2025
Departement of Clinical and Chemical Pathology, Kasr Alainy Medical School, Cairo University, Egypt.
Background: The emergence of worldwide pandemic caused by coronavirus 2 (SARS-CoV-2) has caused a radical change in everyday life. Patients diseased with FMF show manifestations and labs highly similar to COVID infected patients. In the current study, we evaluate the presence of variants in exon 10 of MEFV gene and the relation with severity of symptoms in patients with COVID-19 pneumonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!