Straw return is a recognized agricultural practice that improves soil quality, reduces reliance on chemical fertilizers, and supports sustainable agriculture. Its effectiveness is influenced by microbial changes under varying soil properties and fertilization practices. In a wheat-maize rotation system, field experiments were conducted over 2 years in loam and clay loam soils with five fertilizer (N) application treatments (i.e., no N fertilizer (N0) and N fertilizer basal-to-top-dressing ratios of 3:7 (N3:7), 4:6 (N4:6), 5:5 (N5:5), and 6:4 (N6:4)) to investigate the dynamics of maize straw decomposition, changes in soil organic carbon (SOC) and total nitrogen (TN) concentrations, soil bacterial diversity and abundance, and their interactions. Our results showed that the optimization of N fertilizer basal-to-top-dressing ratios enhanced SOC and TN by accelerating maize straw decomposition and nutrient release, as well as increasing plant carbon and nitrogen inputs. At the wheat maturity stage, the decomposition rate of maize straw reached 69.48-75.04%. The N4:6 and N5:5 ratios exhibited higher decomposition rates and C and N release rates in both soil textures. Compared to N0, N application treatments increased SOC and TN concentrations by 7.90-14.17% and 7.94-33.60%, respectively. The effects were most pronounced with the N4:6 ratio in loam and the N5:5 ratio in clay loam. Both soil textures had the same dominant bacterial phyla, but species abundance differed significantly. Loam had a significantly higher relative abundance of Proteobacteria and lower relative abundances of Gemmatimonadetes, Actinobacteria, and Chloroflexi than clay loam. N application significantly influenced bacterial diversity, with higher diversity observed with the N4:6 ratio in loam and the N5:5 ratio in clay loam. Structural equation modeling indicated that different N application treatments in loam influenced maize straw decomposition by altering the soil C/N ratio and bacterial community diversity, while in clay loam, N application treatments influenced maize straw decomposition mainly by altering the soil C/N ratio. Overall, the N4:6 treatment in loam and the N5:5 treatment in clay loam accelerated the decomposition and nutrient release of maize straw, enhanced SOC, TN, and bacterial community abundance, and provided a scientific basis for efficient straw utilization and sustainable agricultural development in the North China Plain region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835825PMC
http://dx.doi.org/10.3389/fmicb.2025.1506155DOI Listing

Publication Analysis

Top Keywords

maize straw
28
clay loam
24
straw decomposition
20
application treatments
16
fertilizer basal-to-top-dressing
12
basal-to-top-dressing ratios
12
bacterial community
12
soil textures
12
loam
12
loam n55
12

Similar Publications

Effects of partial silage replacement with corn stover pellets on the rumen microbiota and serum metabolome of breeding cows.

Front Microbiol

February 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.

Introduction: Straw pellet ration replacing part of silage is of great significance for farmers to save farming costs and solve the lack of feed resources. A comprehensive analysis of rumen microbial and serum metabolite compositions is conducted to promote the development of the modern breeding cows-feeding industry.

Methods: In this study, 18 healthy 2-year-old Simmental breeding cows weighing 550 ± 20 kg were selected and randomly divided into two groups.

View Article and Find Full Text PDF

Long-term straw return with moderate nitrogen levels reshapes soil communities in a vertisol.

Front Microbiol

February 2025

State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.

Introduction: Incorporating straw into the soil is a sustainable practice that can mitigate some of the adverse effects of excessive N fertilization on soil structure degradation and microbial diversity reduction.

Methods: This objective of this study was to determine the combined effects of straw management (straw return and straw removal) and N fertilization (0, 360, 450, 540, 630, and 720 kg N ha yr.) on crop yields, soil properties, and soil microbial communities in a long-term wheat-maize cropping system.

View Article and Find Full Text PDF

Nickel-supported cellulose-based porous composite for catalytic hydrogenation of oleic acid.

Int J Biol Macromol

March 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Based on the amino-functionalized corn straw cellulose-based porous material, a structurally stable and high-performance straw-based metal catalyst (PPCS@Ni) was prepared by depositing metal particles on the surface of porous straw (PCS) using an economical and environmentally friendly polymer-assisted metal deposition (PAMD) method. Due to the excellent structural stability of the metal material and the catalytic performance of nickel, PPCS@Ni exhibited outstanding catalytic efficiency, cyclic regeneration ability, and stability in the catalytic hydrogenation of oleic acid. Furthermore, after experimental screening and optimization (8 g oleic acid, 34.

View Article and Find Full Text PDF

Acetic acid production from corn straw via enzymatic degradation using putative acetyl esterase from the metagenome assembled genome.

Enzyme Microb Technol

March 2025

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China. Electronic address:

Acetic acid production from corn straw by enzyme catalysis shows its application value in food industry. In this study, a gene encoding for a putative acetyl esterase derived from Sphingobacterium soilsilvae Em02 was discovered in metagenome assembled genome. The gene was expressed in Escherichia coli BL21 to obtain enzyme with a molecular mass of 38.

View Article and Find Full Text PDF

This study was to determine the synergistic effect of corn straw and mulberry leaves in sheep diet. Corn straw and mulberry leaves were mixed as culture substrate for six groups: 100:0 (T0), 80:20 (T20), 60:40 (T40), 40: 60 (T60), 20:80 (T80) and 0:100 (T100). The in vitro culture indicated that mulberry leaves exhibited a positive correlation with theoretical gas production (GP), cumulative GP, microbial crude protein concentration, and organic matter digestibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!