Objectives: In the present study, we tested the functional/pharmacological significance of dimethyl fumarate (DMF) in streptozotocin-induced diabetic neuropathy (DN) in rats and high glucose-exposed Neuro2a (N2a) cells.

Materials And Methods: To evaluate the pharmacological effects of DMF on diabetic neuropathy, we assessed behavioral and functional parameters of peripheral neuropathy, oxidative stress markers, and target protein expression using immunohistochemistry/immunocytochemistry, and Western blotting in diabetic rats and hyperglycemic N2a cells.

Results: Diabetic rats exhibited hyperalgesia, allodynia, and compromised sensory and motor nerve conduction velocities in comparison to normal rats. Dorsal root ganglias of diabetic rats showed decreased antioxidant levels and increased pro-inflammatory transcription factors such as nuclear factor erythroid-related factor 2 and nuclear factor-kappa B, alongside reduced expression of the heat shock protein (HSP) 90. Administering DMF to diabetic rats for 2 weeks reversed these effects in a dose-dependent manner. We observed significant compromise in mitochondrial function, indicated by reduced mitochondrial membrane potential, increased free radical levels, and compromised mitochondrial complex activities in N2a cells exposed to elevated glucose levels. Conversely, DMF treatment restored mitochondrial function and augmented mitochondrial biogenesis through the upregulation of PGC-1α and improved chaperone activity by increasing the expression of HSP 60 and HSP 70.

Conclusions: Overall, DMF alleviated neurobehavioral deficits in DN rats and enhanced mitochondrial function and chaperone activity under hyperglycemic conditions in both diabetic rats and N2a cells.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijp.ijp_540_24DOI Listing

Publication Analysis

Top Keywords

diabetic rats
20
diabetic neuropathy
12
mitochondrial function
12
dimethyl fumarate
8
nuclear factor
8
factor erythroid-related
8
erythroid-related factor
8
diabetic
8
rats
8
dmf diabetic
8

Similar Publications

Exudate management and cell activity enhancement are vital to complicated wound healing. However, current exudate management dressings indiscriminately remove exudate, which is detrimental to cell activity enhancement. Herein, a novel class of electroactive bilayer (cMO/PVA) dressing is developed by constructing manganese oxide nanoneedle-clusters decorated commercial carbon cloth (MO), in situ casting polyvinyl alcohol (PVA) hydrogel, and finally charging.

View Article and Find Full Text PDF

Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.

View Article and Find Full Text PDF

Introduction: The polyol pathway is responsible for the metabolism of almost one-third of the total glucose in people with chronic diabetes. Moreover, it causes complications in organs that rely on aldose reductase (AR) as an enzyme. The purpose of this research was to examine the in vitro and in vivo effects of a flavonoid-rich ethyl acetate fraction of a methanolic extract of Ficus carica Lam.

View Article and Find Full Text PDF

Background: The CXC motif chemokine ligand 8 (CXCL8)-CXC motif chemokine receptor 1/2 (CXCR1/2) axis has been implicated in type 1 diabetes mellitus (T1DM). Its actions on non-immune cells may also contribute to T1DM-associated complications, including painful diabetic peripheral neuropathy (DPN) and diabetic retinopathy (DR).

Methods: We assessed the efficacy of early (4-8 weeks) or late (8-12 weeks) daily ladarixin (LDX) for the treatment of streptozotocin (STZ)-induced T1DM and the related complications of DPN or DR in male rats.

View Article and Find Full Text PDF

IntroductionDiabetic cardiomyopathy (DCM) is a complication of diabetes mellitus (DM) that can lead to heart failure and increase the risk of mortality. Pedunculoside (PE), a novel triterpenoid saponin, exhibits anti-inflammatory and anti-oxidative stress (OS) properties. However, its role in DCM remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!