A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards Ultra-Stable Wide-Temperature Zinc-Ion Batteries by Using Ion-Sieving Organic Framework Membrane. | LitMetric

Towards Ultra-Stable Wide-Temperature Zinc-Ion Batteries by Using Ion-Sieving Organic Framework Membrane.

Angew Chem Int Ed Engl

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.

Published: February 2025

Aqueous zinc-ion batteries (AZIBs) offer notable advantages in safety and cost-efficiency, but Zn dendrite growth and unstable interfacial reactions hinder their commercial viability. A crucial factor in addressing these challenges lies in optimizing the separator to regulate ion transport and stabilize electrode interfaces. Herein, we propose a covalent organic framework (COF)-based separator with quasi-single-ion conduction, specifically a Zn-substituted sulfonate COF (COF-Zn) membrane, designed to tackle these issues. Featuring a high Zn transference number (0.87) and a thin 25 μm profile, the COF-Zn separator allows for reduced electrolyte usage (20 μL mg) while effectively minimizing cathode dissolution. Its quasi-single-ion conductivity and electronegative properties improve Zn anode's stability by lowering water activity. This separator enables ultra-stable AZIBs, as demonstrated in various full cells including Zn//4,5,9,10-pyrenetetrone (PTO), Zn//I and Zn//VO. Remarkably, the Zn//PTO cell achieves an energy density of 260 Wh kg, 100 % capacity retention under reduced electrolyte conditions, and stable all-weather cycling from -40 to +100 °C with a customized electrolyte.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202423118DOI Listing

Publication Analysis

Top Keywords

zinc-ion batteries
8
organic framework
8
reduced electrolyte
8
ultra-stable wide-temperature
4
wide-temperature zinc-ion
4
batteries ion-sieving
4
ion-sieving organic
4
framework membrane
4
membrane aqueous
4
aqueous zinc-ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!