Background: High-Runner (HR) mice, selectively bred for increased voluntary wheel running behavior, exhibit heightened motivation to run. Exercise has been shown to influence hippocampal long-term potentiation (LTP) and memory, and is neuroprotective in several neurodegenerative diseases.
Objective: This study aimed to determine the impact of intense running in HR mice with wheel access on hippocampal LTP, compared to HR mice without wheels and non-selected control (C) mice with/without wheels. Additionally, we investigated the involvement of D1/D5 receptors and the dopamine transporter (DAT) in LTP modulation and examined levels of these proteins in HR and C mice.
Methods: Adult female HR and C mice were individually housed with/without running wheels for at least two weeks. Hippocampal LTP of extracellular field excitatory postsynaptic potentials (fEPSPs) was measured in area CA1, and SKF-38393 (D1/D5 receptor agonist) and GBR 12909 (DAT inhibitor) were used to probe the role of D1/D5 receptors and DAT in LTP differences. Western blot analyses assessed D1/D5 receptor and DAT expression in the hippocampus, prefrontal cortex, and cerebellum.
Results: HR mice with wheel access showed significantly increased hippocampal LTP compared to those without wheels and to C mice with/without wheels. Treatment with SKF-38393 or GBR 12909 prevented the heightened LTP in HR mice with wheels, aligning it with levels in C mice. Hippocampal D1/D5 receptor levels were lower, and DAT levels were higher in HR mice compared to C mice. No significant changes were observed in other brain regions.
Conclusions: The increased hippocampal LTP seen in HR mice with wheel access may be related to alterations in dopaminergic synaptic transmission that underlie the neurophysiological basis of hyperactivity, motor disorders, and/or motivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09226028241290400 | DOI Listing |
Hippocampus
March 2025
Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada.
Long-term potentiation (LTP) is proposed to be the molecular mechanism underlying learning and memory in the brain. A key event for LTP is the influx of calcium into post-synaptic neurons via multiple ion channel control systems. One such system involves N-methyl-D-aspartate receptors (NMDARs), which were originally believed to be essential for LTP and new learning.
View Article and Find Full Text PDFElife
March 2025
Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al.
View Article and Find Full Text PDFGlucose is a predominant fuel for the brain supporting its high energy demand associated with neuronal signaling and synaptic activity. Long-term potentiation (LTP) is required for learning and memory formation by generating long lasting increase in synaptic strength and signal transmission between two neurons. While the electrophysiological bases of LTP are well established, much less is known about the metabolic demands of neurons involved in LTP.
View Article and Find Full Text PDFBackground: Repetitive transcranial magnetic stimulation (rTMS) is well known for its ability to induce synaptic plasticity, yet its impact on structural and functional remodeling within stimulated networks remains unclear. This study investigates the cellular and network-level mechanisms of rTMS-induced plasticity using a clinically approved 600-pulse intermittent theta burst stimulation (iTBS600) protocol applied to organotypic brain tissue cultures.
Methods: We applied iTBS600 to entorhino-hippocampal organotypic tissue cultures and conducted a 24-hour analysis using c-Fos immunostaining, whole-cell patch-clamp recordings, time-lapse imaging of dendritic spines, and calcium imaging.
Sci Adv
March 2025
Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
Learning and memory deficits, including spatial navigation difficulties, are common in autism spectrum disorder (ASD). Several ASD mouse models (, , ) exhibit impaired spatial learning, with these deficits often attributed to hippocampal dysfunction. However, we identify the perirhinal cortex (PRC) as a critical driver of these deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!