Powdery mildew fungi are serious pathogens affecting many plant species. Their genomes encode extensive repertoires of secreted effector proteins that suppress host immunity. Here, we revised and analyzed the candidate secreted effector protein (CSEP) effectome of the powdery mildew fungus, Blumeria hordei (Bh). We identified seven putative effectors that are broadly conserved in powdery mildew species, suggesting that they are core effectors of these phytopathogens. We showed that one of these effectors, CSEP0214, interacts with the barley (Hordeum vulgare) vacuolar protein sorting 18 (VPS18) protein, a shared component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein-sorting (HOPS) endosomal tethering complexes that mediate fusion of early endosomes and multivesicular bodies, respectively, with the central vacuole. Overexpression of CSEP0214 and knockdown of either VPS18, HOPS-specific VPS41 or CORVET-specific VPS8 blocked the vacuolar pathway and the accumulation of the fluorescent vacuolar marker protein (SP)-RFP-AFVY in the endoplasmic reticulum. Moreover, CSEP0214 inhibited the interaction between VPS18 and VPS16, which are both shared components of CORVET as well as HOPS. Additionally, introducing CSEP0214 into barley leaf cells blocked the hypersensitive cell death response associated with resistance gene-mediated immunity, indicating that endomembrane trafficking is required for this process. CSEP0214 expression also prevented callose deposition in cell wall appositions at attack sites and encasements of fungal infection structures. Our results indicate that the powdery mildew core effector CSEP0214 is an essential suppressor of plant immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiaf067DOI Listing

Publication Analysis

Top Keywords

powdery mildew
20
mildew core
8
core effector
8
effector protein
8
tethering complexes
8
secreted effector
8
csep0214
6
powdery
5
protein
5
core
4

Similar Publications

Wheat is cultivated across diverse global environments, and its productivity is significantly impacted by various biotic stresses, most importantly but not limited to rust diseases, Fusarium head blight, wheat blast, and powdery mildew. The genetic diversity of modern cultivars has been eroded by domestication and selection, increasing their vulnerability to biotic stress due to uniformity. The rapid spread of new highly virulent and aggressive pathogen strains has exacerbated this situation.

View Article and Find Full Text PDF

Powdery mildew is a common serious disease threatening global melon production. Red light can improve plant resistance to powdery mildew by inducing endogenous ethylene synthesis; however, the underlying molecular mechanism requires elucidation. In this study, an ERF transcription factor CmRAP2-13 was identified, silencing it significantly improved melon seedlings resistance to powdery mildew.

View Article and Find Full Text PDF

PmAm, a broad-spectrum powdery mildew resistance source located on chromosome 6T, is transferred to common wheat.

Plant Dis

March 2025

Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, Shandong, China, Jinan, Shandong, China, 250100;

Powdery mildew (caused by Blumeria graminis f. sp. tritici) limits grain production and reduces grain quality in wheat.

View Article and Find Full Text PDF

Agrochemicals play a pivotal role in the management of pests and diseases and the way agrochemicals are utilized exerts significant impacts on the environment. Ensuring rational application and improving utilization rates of agrochemicals are major demands in developing green delivery systems. Herein, a model of nucleic acid-peptide coacervate (NPC) for agrochemical delivery is presented, which is formed by mixing negatively charged single-stranded DNAs with positively charged poly-L-lysine.

View Article and Find Full Text PDF

Grapes, as one of the world's oldest economic crops, are severely affected by grape powdery mildew, causing significant economic losses. As a phytoalexin against powdery mildew, stilbenes and their key synthetic gene, stilbene synthase (STS), are highly sought after by researchers. In our previous research, a new gene, VqNSTS2, was identified from Vitis quinquangularis accession 'Danfeng-2' through transcriptomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!