Polyelectrolyte brushes consist of a set of charged linear macromolecules, each tethered at one end to a surface. An example is the glycocalyx which refers to hair-like negatively charged sugar molecules that coat the outside membrane of all cells. We consider the transport and equilibrium distribution of ions and the resulting electrical potential when such a brush is immersed in a salt buffer containing monovalent cations (sodium and/or potassium). The Gouy-Chapman model for ion screening at a charged surface captures the effects of the Coulombic force that drives ion electrophoresis and diffusion but neglects non-Coulombic forces and ion pairing. By including the distinct binding affinities of these counter-ions with the brush and their so-called Born radii, which account for Born forces acting on them when the permittivity is nonuniform, we propose modified Poisson-Nernst-Planck continuum models that show the distinct profiles that may result depending on those ion-specific properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.111.014416 | DOI Listing |
Biomacromolecules
March 2025
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.
Understanding how zwitterionic spherical polyelectrolyte brushes (SPB) fulfill their antifouling functions requires knowledge of their interactions with exogenous nanoparticles, such as proteins. In this study, zwitterionic SPB were synthesized by grafting 3-[(2-(methacryloyloxy)ethyl)dimethylammonio]propanoate (CBMA) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) onto a polystyrene core via photoemulsion polymerization. Small-angle X-ray scattering was employed to elucidate the interactions and protein adsorption behaviors of the zwitterionic SPB and proteins.
View Article and Find Full Text PDFMacromol Rapid Commun
February 2025
Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
Radioactive pertechnetate (TcO ) from the nuclear fuel cycle presents a severe risk to the environment due to its large solubility in water and non-complexing nature. By utilizing the chaotropic properties of TcO and its nonradioactive surrogate perrhenate (ReO ) and the principle of chaotropic interactions, a series of quaternary ammonium-containing polyelectrolyte brush-grafted silica particles are designed and applied to remove ReO from water. These cationic hairy particles (HPs) are synthesized by surface-initiated atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate and subsequent quaternization with various halogen compounds.
View Article and Find Full Text PDFPhys Rev E
January 2025
Keck Graduate Institute, Henry E. Riggs School of Applied Life Sciences, Claremont, California 91711, USA.
Polyelectrolyte brushes consist of a set of charged linear macromolecules, each tethered at one end to a surface. An example is the glycocalyx which refers to hair-like negatively charged sugar molecules that coat the outside membrane of all cells. We consider the transport and equilibrium distribution of ions and the resulting electrical potential when such a brush is immersed in a salt buffer containing monovalent cations (sodium and/or potassium).
View Article and Find Full Text PDFMacromolecules
February 2025
Department of Molecules and Materials, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Polyelectrolyte brushes are functional surface coatings that react to external stimuli. The response of these brushes in electric fields is nearly immediate as the field acts directly on the charges in the polyion, while the response to bulk stimuli such as temperature, acidity, and ionic composition is intrinsically capped by transport limitations. However, the response of fully charged brushes is limited because large field strengths are required to achieve a response.
View Article and Find Full Text PDFPhys Rev Lett
January 2025
University of California, Department of Chemical and Biomolecular Engineering, Berkeley, California 94720, USA.
Modeling ion correlations in inhomogeneous polymers and soft matters with spatially varying ionic strength or dielectric permittivity remains a great challenge. Here, we develop a new theory that systematically incorporates electrostatic fluctuations into the self-consistent field theory for polymers. The theory is applied to polyelectrolyte brushes to explain abnormal phenomena observed in recent experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!