A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phase behavior and dynamics of active Brownian particles in an alignment field. | LitMetric

Self-propelled particles that are subject to noise are a well-established generic model system for active matter. A homogeneous alignment field can be used to orient the direction of the self-propulsion velocity and to model systems like phoretic Janus particles with a magnetic dipole moment or magnetotactic bacteria in an external magnetic field. Computer simulations are used to predict the phase behavior and dynamics of self-propelled Brownian particles in a homogeneous alignment field in two dimensions. Phase boundaries of the gas-liquid coexistence region are calculated for various Péclet numbers, particle densities, and alignment field strengths. Critical points and exponents are calculated and, in agreement with previous simulations, do not seem to belong to the universality class of the 2D Ising model. Finally, the dynamics of spinodal decomposition for quenching the system from the one-phase to the two-phase coexistence region by increasing the Péclet number is characterized. Our results may help to identify parameters for optimal transport of active matter in complex environments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.111.015425DOI Listing

Publication Analysis

Top Keywords

alignment field
16
phase behavior
8
behavior dynamics
8
brownian particles
8
active matter
8
homogeneous alignment
8
coexistence region
8
field
5
dynamics active
4
active brownian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!