High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signalling and neuron-to-glioma synapses. Glutamatergic AMPA receptor-dependent synapses between neurons and glioma cells have been demonstrated in paediatric and adult high-grade gliomas, and early work has suggested heterogeneous glioma GABAergic responses. However, neuron-to-glioma synapses mediated by neurotransmitters other than glutamate remain understudied. Using whole-cell patch-clamp electrophysiology, in vivo optogenetics and patient-derived orthotopic xenograft models, we identified functional, tumour-promoting GABAergic neuron-to-glioma synapses mediated by GABA receptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 chloride transporter function and consequently elevated intracellular chloride concentration in DMG malignant cells. As membrane depolarization increases glioma proliferation, we found that the activity of GABAergic interneurons promotes DMG proliferation in vivo. The benzodiazepine lorazepam enhances GABA-mediated signalling, increases glioma proliferation and growth, and shortens survival in DMG patient-derived orthotopic xenograft models. By contrast, only minimal depolarizing GABAergic currents were found in hemispheric HGGs and lorazepam did not influence the growth rate of hemispheric glioblastoma xenografts. Together, these findings uncover growth-promoting GABAergic synaptic communication between GABAergic neurons and H3K27M-altered DMG cells, underscoring a tumour subtype-specific mechanism of brain cancer neurophysiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-08579-3 | DOI Listing |
Nature
February 2025
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signalling and neuron-to-glioma synapses.
View Article and Find Full Text PDFCell
January 2025
Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany. Electronic address:
bioRxiv
September 2024
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses.
View Article and Find Full Text PDFNat Med
June 2024
Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors.
View Article and Find Full Text PDFNature
November 2023
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. The consequent glioma cell membrane depolarization drives tumour proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!