The Spo11 complex catalyses the formation of DNA double-strand breaks (DSBs), initiating meiotic recombination-a process that is essential for fertility and genetic diversity. Although the function of Spo11 has been known for 27 years, previous efforts to reconstitute DSB formation in vitro have been unsuccessful. Here we biochemically characterize the mouse SPO11-TOP6BL protein complex, and show that this complex cleaves DNA and covalently attaches to the 5' terminus of DNA breaks in vitro. Using a point-mutation strategy, we reveal that Mg is essential for the DNA-cleavage activity of this complex in vitro, as confirmed by knock-in mice carrying a point mutation in SPO11 that disrupts its binding to Mg, thereby abolishing DSB formation. However, the activity of the SPO11 complex is ATP-independent. We also present evidence that the mouse SPO11 complex is biochemically distinct from the ancestral topoisomerase VI. Our findings establish a mechanistic framework for understanding the first steps of meiotic recombination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-08551-1 | DOI Listing |
Nature
February 2025
Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium.
SPO11 initiates meiotic recombination through the induction of programmed DNA double-strand breaks (DSBs), but this catalytic activity has never been reconstituted in vitro. Here, using Mus musculus SPO11, we report a biochemical system that recapitulates all the hallmarks of meiotic DSB formation. We show that SPO11 catalyses break formation in the absence of any partners and remains covalently attached to the 5' broken strands.
View Article and Find Full Text PDFNature
February 2025
Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs). SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic and gametocidal potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks-how they do so remains poorly understood.
View Article and Find Full Text PDFNature
February 2025
Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
The Spo11 complex catalyses the formation of DNA double-strand breaks (DSBs), initiating meiotic recombination-a process that is essential for fertility and genetic diversity. Although the function of Spo11 has been known for 27 years, previous efforts to reconstitute DSB formation in vitro have been unsuccessful. Here we biochemically characterize the mouse SPO11-TOP6BL protein complex, and show that this complex cleaves DNA and covalently attaches to the 5' terminus of DNA breaks in vitro.
View Article and Find Full Text PDFPLoS Genet
December 2024
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom.
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny.
View Article and Find Full Text PDFbioRxiv
November 2024
Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065.
Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic and gametocidal potential, so cells must foster SPO11's beneficial functions while minimizing its risks. SPO11 mechanism and regulation remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!