Probabilistic computing using probabilistic bits (p-bits) presents an efficient alternative to traditional CMOS logic for complex problem-solving, including simulated annealing and machine learning. Realizing p-bits with emerging devices such as magnetic tunnel junctions introduces device variability, which was expected to negatively impact computational performance. However, this study reveals an unexpected finding: device variability can not only degrade but also enhance algorithm performance, particularly by leveraging timing variability. This paper introduces a GPU-accelerated, open-source simulated annealing framework based on p-bits that models key device variability factors-timing, intensity, and offset-to reflect real-world device behavior. Through CUDA-based simulations, our approach achieves a two-order magnitude speedup over CPU implementations on the MAX-CUT benchmark with problem sizes ranging from 800 to 20,000 nodes. By providing a scalable and accessible tool, this framework aims to advance research in probabilistic computing, enabling optimization applications in diverse fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840000 | PMC |
http://dx.doi.org/10.1038/s41598-025-90520-3 | DOI Listing |
Sci Adv
March 2025
The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA.
DNA nanostructures are typically assembled by thermal annealing in buffers containing magnesium. We demonstrate the assembly of DNA nanostructures at constant temperatures ranging from 4° to 50°C in solutions containing different counterions. The choice of counterions and the assembly temperature influence the isothermal assembly of several DNA motifs and designed three-dimensional DNA crystals.
View Article and Find Full Text PDFScience
March 2025
D-Wave Quantum Inc., Burnaby, British Columbia, Canada.
Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schrödinger equation.
View Article and Find Full Text PDFThe instant crystallization of semi-crystalline polymers has become possible following the recent advances in Fast Scanning Calorimetry (FSC) and enables us to make a bridge between the time scale available experimentally with those accessible with computer simulations. Although the FSC observations have provided new information on the crystallization kinetics and evolution of the crystals, the molecular details on the chain exchange events between the ordered and disordered domains of crystals have remained elusive. Using molecular dynamics simulations, we examined the detailed chain dynamics and thermodynamics of polyamide 6 (PA6) system under two heating treatments: (i) quenching PA6 melt deeply below the melting temperature Tm and (ii) annealing the resulting quenched system to a temperature close to Tm.
View Article and Find Full Text PDFSci Rep
March 2025
School of Computing, Tokyo Institute of Technology, Yokohama, 226-8502, Japan.
Accurate determination of volume percentages in three-phase fluids is paramount for the success of various industrial processes, ranging from oil and gas production to chemical engineering. This study presents a comprehensive approach to this challenge by leveraging advanced signal processing techniques and machine learning paradigms. Our methodology integrates the time, frequency, and wavelet transform features extracted from X-ray-based measurement systems whose structure consists of an X-ray tube source, two sodium iodide detectors, and a test pipe, all of which were simulated using the Monte Carlo N Particle code.
View Article and Find Full Text PDFSci Rep
March 2025
Faculty of Physics, University of Tabriz, Tabriz, Iran.
This study aimed to investigate the structural, optical, and electronic properties of WO thin films modified by Ta-doping, considering their potential application in photoelectrochemical (PEC) water splitting. Due to its unique physical and chemical properties, WO films have been commonly suggested as a promising photoanode for hydrogen production. However, the wide bandgap and unsuitable band edge positions of WO limit its PEC efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!