Quasi-line waves represent a distinct class of propagation modes along non-complementary impedance surfaces, offering an alternative to the conventional line waves typically formed by complementary impedance surfaces. In this study, we introduce a novel design for quasi-line waves utilizing non-dual, purely inductive impedance structures. By incorporating multilayer graphene, our design achieves wide bandwidth and extended propagation lengths in the terahertz range, with field concentration localized at the edges of the inductive surfaces. This configuration enables unidirectional wave propagation, with graphene integration providing precise control over bandwidth and transmission characteristics. Unlike traditional line waves, which are constrained to specific terahertz frequency ranges, our quasi-line mode-guided by self-inductive impedance surfaces-demonstrates significantly broader bandwidth and enhanced electric field intensity. The performance of this mode is strongly influenced by capacitance variations between impedance surfaces, exceeding the singularity limitation of conventional line waves. Our proposed structure demonstrates superior performance in both bandwidth and mode singularity within the terahertz spectrum, surpassing traditional line wave designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840005PMC
http://dx.doi.org/10.1038/s41598-025-90517-yDOI Listing

Publication Analysis

Top Keywords

impedance surfaces
16
wave propagation
8
terahertz spectrum
8
quasi-line waves
8
conventional waves
8
surfaces
5
waves
5
impedance
5
self-reactive impedance
4
surfaces enhanced
4

Similar Publications

Solid oxide cell technologies play a crucial role in climate change mitigation by enabling the reversible storage of renewable energy. Understanding the electrochemical high-temperature reaction mechanisms and the catalytic role of the electrode and electrolyte materials is essential for advancing power-to-H technologies. Despite its significance, limited spectroscopic research focusing on nickel and yttria-stabilized zirconia (Ni/YSZ) is available.

View Article and Find Full Text PDF

A novel label-free immunosensor for detection of VEGF using FFT admittance voltammetry.

Bioelectrochemistry

February 2025

Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.; Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran; Dept. of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada. Electronic address:

This study presents a novel, label-free electrochemical immunosensor for the detection of vascular endothelial growth factor (VEGF), a crucial tumor biomarker. The immunosensor was developed by electrochemical deposition of gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite on glassy carbon (GC) and screen-printed carbon (SPC) electrodes. A specific monoclonal antibody against VEGF was immobilized on the electrode surface through a carbodiimide coupling reaction.

View Article and Find Full Text PDF

Diketopyrrolopyrrole-based blue dyes in dye-sensitized solar cells (DSCs) exhibit promise for building-integrated photovoltaics, but their efficiency is compromised by dye aggregation-induced charge recombination. Novel bile acid derivative co-adsorbents featuring bulky hydrophobic substituents at the 3-β position were synthesized to address this challenge. These molecules, designed to modulate intermolecular electronic interactions, effectively altered the TiO surface coverage dynamics, as evidenced by UV-Vis spectroscopy and dye-loading kinetics.

View Article and Find Full Text PDF

Au nanoparticles-composite TiO nanowires (NWs) modified carbon paper (CP) anode was synthesized via the hydrothermal method. Field emission scanning electron microscopy (FESEM) images demonstrate that the modified nanocomposite electrode features a rough and bumpy surface structure. The electrochemical activities of TiO-Au/CP and the control electrodes (TiO-NWs/CP, Au/CP, CP) for microbial fuel cell (MFC) are investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

α-Zirconium Phosphate Hybrid Intercalated by Carbon Dots with High Anticorrosion Efficiency for Waterborne Epoxy Resin Composite Coating.

ACS Appl Mater Interfaces

March 2025

College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, Fujian 361005, China.

In recent years, waterborne epoxy resin (WE) has garnered attention due to its lower environmental pollution compared to solvent-based coatings. However, their poor barrier properties severely limit their practical applications. In order to enhance the corrosion resistance of water-based epoxy resin coating, a highly efficient strategy of combining the barrier effect of lamellar structured zirconium phosphate (α-ZrP) and the inhibitor effect of special carbon dots by the intercalation method was proposed in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!