Periodontal ligament stem cell (PDLSC)-based tissue engineering is an important method to promote periodontal tissue regeneration. However, PDLSCs are susceptible to the effects of replicative senescence, leading to reduced proliferation and differentiation abilities and weakened tissue regeneration potential. Senolytics (the combination of dasatinib and quercetin) are drugs that inhibit cellular aging through inducing the apoptosis of senescent cells, but whether they have positive effects during the senescence of PDLSCs is unknown. The present study established a long-term in vitro culture model of PDLSCs and then analyzed the effects of senolytics on the senescence, apoptosis, and osteogenic differentiation of PDLSCs in vitro and PDLSC-based tissue regeneration in vivo. The results showed that senolytics delayed the process of aging in prolonged-cultured PDLSCs and promoted the elimination and apoptosis of senescent cells. Moreover, senolytics improved the osteogenic differentiation ability of both young and senescent PDLSCs in vitro and promoted PDLSC-based alveolar bone regeneration in vivo. Furthermore, senolytics inhibited the expression of YAP in senescent PDLSCs. Their antiaging effects were enhanced when combined with the YAP inhibitor verteporfin, but were inhibited when combined with the YAP activator NIBR-LTSi. Taken together, these findings suggest that senolytics promoted the elimination of senescent PDLSCs and enhanced senescent PDLSC-based bone regeneration, partially through the inhibition of YAP expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2025.119921 | DOI Listing |
J Immunol
March 2025
Immunology Program, Babraham Institute, Cambridge, United Kingdom.
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations.
View Article and Find Full Text PDFJ Immunol
February 2025
Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, United States.
Functional alterations with age are observed in all human systems, but the aging of the adaptive immune system displays both general changes affecting all individuals, and idiosyncratic changes that are unique to individuals. In the T cell compartment, general aging manifests in three ways: (1) the reduction of naïve T cells, (2) the accumulation of differentiated memory T cells, and (3) a reduced overall T cell receptor (TCR) repertoire. Idiosyncratic impacts of aging, such as changes in the TCR repertoires of altered memory and naïve T cells are shaped by each person's life exposures.
View Article and Find Full Text PDFCereb Cortex
March 2025
Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
This study investigates the relationship between resting-state functional magnetic resonance imaging (rs-fMRI) topological properties and synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) synaptic density (SD) in late-life depression (LLD). 18 LLD patients and 33 healthy controls underwent rs-fMRI, 3D T1-weighted MRI, and 11C-UCB-J PET scans to assess SD. The rs-fMRI data were utilized to construct weighted networks for calculating four global topological metrics, including clustering coefficient, characteristic path length, global efficiency, and small-worldness, and six nodal metrics, including nodal clustering coefficient, nodal characteristic path length, nodal degree, nodal strength, local efficiency, and betweenness centrality.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
March 2025
School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
Ectoine, a cytoprotective compound derived from bacteria and categorized as a postbiotic, is increasingly recognized as a viable alternative to traditional therapeutic agents, frequently presenting considerable side effects. This extensive review underscores the effectiveness of ectoine as a postbiotic in managing conditions such as rhinosinusitis, atopic dermatitis, and allergic rhinitis, all while demonstrating a commendable safety profile. Its capacity to establish robust hydrogen bonds without compromising cellular integrity supports its potential application in anti-aging and cancer prevention strategies.
View Article and Find Full Text PDFBiogerontology
March 2025
Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!