Efficacy, physicochemical and processing properties of oat peptides prepared via ultrasonication-assisted organic acid hydrolysis.

Int J Biol Macromol

College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China. Electronic address:

Published: February 2025

Currently, the low efficiency and pollution issues associated with biological and chemical methods for the preparation of functional peptides continue to pose challenges, restricting the large-scale production and utilization of functional peptides. This study has found that the ultrasound-assisted organic acid-surfactant system is an efficient and green method for the preparation of functional peptides. The probe ultrasonication-assisted tartaric acid system successfully degraded oat globulins into peptides with a degree of hydrolysis (DH) of 22.8 %. The addition of glyceryl monostearate increased the instantaneous burst rate of the bubble (with a D-value of 16 %), thereby elevating the DH to as high as 36 %. The resulting oat peptide particles exhibited high hydrophobicity, and consequently demonstrated strong foaming capacity (99.6 %), oil holding capacity (399.4 %), emulsifying ability (Emulsifying activity index = 50.5 m/g, stability index = 108 min), and hydroxyl radical scavenging capacity of 98.9 % (at a concentration of 5 mg/mL), holding great promise for application in the field of food processing. These findings deepen our understanding of the enhanced ultrasonic hydrolysis ability of surfactants and pave a new way to produce functional peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141181DOI Listing

Publication Analysis

Top Keywords

functional peptides
16
preparation functional
8
peptides
6
efficacy physicochemical
4
physicochemical processing
4
processing properties
4
properties oat
4
oat peptides
4
peptides prepared
4
prepared ultrasonication-assisted
4

Similar Publications

Recent research has revealed a close association between obesity and various metabolic disorders, including renal metabolic diseases, but the mechanism is still unknown. This study explored the role of p16INK4a in obesity-related kidney fibrosis and evaluated its potential as a therapeutic target. Using wild-type (WT) mice and p16 KO mice, we fed both groups a high-fat diet (HFD) for 6 months.

View Article and Find Full Text PDF

Injectable Nanocomposite Hydrogels for Intervertebral Disc Degeneration: Combating Oxidative Stress, Mitochondrial Dysfunction, and Ferroptosis.

Adv Healthc Mater

March 2025

Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.

Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.

View Article and Find Full Text PDF

Binding of tryptophan and tryptophan-containing peptides in water by a glucose naphtho crown ether.

Beilstein J Org Chem

March 2025

Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland.

Tryptophan fulfills a plethora of important functions in nature both in its free form and as a component of peptides and proteins. Selective binding of tryptophan is therefore important for diagnostic and medicinal applications. Recently, we reported a glucose naphtho crown ether which is a chemoselective receptor for the esters of aromatic amino acids, in particular tryptophan, in water.

View Article and Find Full Text PDF

Innate and adaptive immunity are intricately linked to the pathogenesis of ulcerative colitis (UC), with dysregulation of the Treg/Th17 balance and M2/M1 macrophage polarization identified as critical factors. Artesunate (ARS) has previously been shown to alleviate UC by inhibiting endoplasmic reticulum stress (ERS). To further investigate the regulatory effects of ARS on immune dysregulation associated with colitis and the role of ERS in this process, an experimental colitis model was established using dextran sulfate sodium (DSS).

View Article and Find Full Text PDF

Background: () is a widely prevalent intracellular parasite that infects almost all warm-blooded animals and causes serious public health problems. The drugs currently used to treat toxoplasmosis have the disadvantage of being toxic and prone to the development of resistance, and the only licensed vaccine entails a risk of virulence restoration. The development of a safe and effective vaccine against is urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!