Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To develop curved bamboo-based products for promoting "bamboo as a substitute for plastic" by deep-molding and high-curvature winding technology, it is urgent to fully understand the effects of moisture content (MC) on flexural properties of bamboo with cellulose fibers at multiple scales. Here, we tested the 3-point flexural behavior of bamboo with cellulose fibers at different MC (0, 5 %, 10 %, 25 % and 50 %), in conjunction with in situ nanoindentation (NI) and environmental scanning electron microscopy (ESEM) to investigate its flexibility and toughness mechanisms. The results showed that gradient distribution of cellulose fibers embedded in soft parenchyma cells adapted to external stresses resulting in bamboo's excellent flexibility and toughness. Low MC (5 %, 10 %) made bamboo more flexible and tougher. The flexibility mechanism acting at the molecular scale was moisture-promoted softening of the lignin-carbohydrate (LCC) complex in the cell wall, and interface slip between the cellulose/LCC caused by water molecules aggregating verified by in situ NI and FTIR spectra, whereas toughness mechanisms originated from the coupling of transwall fracture and fibrils-exposed cellwall tearing, as well as tortuous crack propagation. High MC (25 % and 50 %) impaired flexibility and toughness via intercellular and fibrils-LCC interfacial debonding at multiple scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!