Perioperative neurocognitive disorders (PND), common complications that occur after anesthetized surgery in elderly patients, are major challenges to our rapidly growing aging population. The transcription factor known as nuclear factor erythroid-2-related factor 2 (Nrf2) is an essential component of the cellular antioxidant response, purportedly contributing to the preservation of cognitive functions such as learning and memory. Nevertheless, the function and intracellular processes involving Nrf2 in PND remain largely unknown. Therefore, we evaluate the influence and fundamental mechanism of Nrf2 on PND in aged mice. To establish the postoperative neurocognitive dysfunction (PND) model, aged mice were subjected to anesthesia via inhalation of 3% sevoflurane for a duration of 2 h. The role of Nrf2 in PND was investigated by administering microinjections of either the adeno-associated virus (AAV)-Nrf2 vector or a null virus vector into the hippocampal CA1 region of aged mice 28 days before exposure to sevoflurane. Various assays including enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blotting were employed to assess levels of pro-inflammatory cytokines, microglial activation, and the oxidative stress response. Furthermore, synaptic plasticity was evaluated through long-term potentiation (LTP) recording and Golgi staining techniques. Elevated expression of Nrf2 within the hippocampal CA1 region ameliorated sevoflurane-induced cognitive deficits, synaptic plasticity anomalies, and the oxidative stress reaction in aged mice. Furthermore, the activation of microglia and the release of pro-inflammatory cytokines (including IL-6, TNF-α, and IL-1β) within the hippocampus post-sevoflurane exposure were modulated in an Nrf2-dependent fashion. Based on the findings from present research, we conclude that Nrf2 ameliorates sevoflurane-induced cognitive dysfunction by inhibiting hippocampal neuroinflammation, thereby proposing a potential therapeutic target for PND.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-025-04777-w | DOI Listing |
Geroscience
March 2025
Department of Medicine, College of Human Medicine, Michigan State University, 1355 Bogue St, East Lansing, MI, 48824, USA.
Transient receptor potential ankyrin 1 (TRPA1) is a sensory channel expressed in vagal afferent nerves that detect noxious stimuli. Trpa1 knockout accelerates age-related cardiac fibrosis and dysfunction in mice. This study investigated whether TRPA1 activation with its selective agonist, allyl isothiocyanate (AITC), prevents cardiac aging.
View Article and Find Full Text PDFCells
February 2025
Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
Preclinical studies have shown that the blood from female mice exposed weekly to magnetic fields inhibited breast cancer growth. This double-blind randomized controlled trial investigated whether analogous magnetic therapy could produce similar anticancer sera from human subjects. Twenty-six healthy adult females (ages 30-45) were assigned to either a magnetic therapy group, receiving twice weekly 1 mT magnetic exposures (10 min/session) for 4 weeks, or a control group, who underwent identical sham exposure.
View Article and Find Full Text PDFActa Physiol (Oxf)
April 2025
Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA.
Aim: Aging decreases the metabolic rate and increases the risk of metabolic diseases, highlighting the need for alternative strategies to improve metabolic health. Heat treatment (HT) has shown various metabolic benefits, but its ability to counteract aging-associated metabolic slowdown remains unclear. This study aimed to investigate the impact of whole-body HT on energy metabolism, explore the potential mechanism involving the heat sensor TRPV1, and examine the modulation of gut microbiota.
View Article and Find Full Text PDFFront Immunol
March 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Introduction: Esophageal cancer presents significant challenges due to the limited efficacy and severe side effects associated with conventional treatments. The identification of epigenetic regulatory molecules that are aberrantly expressed in tumors is crucial for elucidating the mechanisms underlying the development and progression of esophageal cancer.
Methods: We performed high-throughput methylation level analysis on cancerous and adjacent tissues from 25 patients, identifying the differentially methylated gene utilizing Bismark software and data from TCGA.
Drug Des Devel Ther
March 2025
Department of Traditional Chinese Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, People's Republic of China.
Background: Daifu Decoction (DFD), a patented herbal prescription used to prevent and treat ulcerative colitis (UC). This study aimed to reveal the effect of DFD on the relapse of UC and its mechanism via integrated retrospective clinical analysis, network pharmacology and in vivo and in vitro experimental validation.
Methods: First, the clinical data of UC patients treated with DFD were reviewed from a real-world study (RWS), and the relapse at 24 weeks after drug withdrawal was recorded to evaluate the relapse rate.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!