Ensuring that the mechanical properties of tissue engineering scaffolds align with those of the target tissues is crucial for their successful integration and functional performance. Tyrosine-tyrosine cross-links are found in nature in numerous proteins including resilin that exhibit enhanced toughness and energy storage capacity. Herein, we investigated the potential of tuning the mechanical properties of scaffolds made from elastin-like polypeptides (ELPs) containing tyrosine residues. Ruthenium-based photoreaction was used to form tyrosine cross-links. To enhance the cytocompatibility of the ELP scaffold, a continuous mode of washing was developed to remove residual ruthenium from the scaffolds. The continuous mode of washing was significantly superior in removing ruthenium and did so in a significantly shorter time as compared to batch washing and the conventional semibatch washing (also called dialysis washing). The range of storage moduli of the fabricated scaffolds spanned tens of Pa to hundreds of kPa. Human fibroblast cells were found to grow in the scaffolds and proliferate. Overall, this work offers a rationale for further developing tyrosine cross-linked ELPs for a broad range of tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c01376 | DOI Listing |
ACS Appl Bio Mater
March 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care, Changsha 410008.
Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Photochromic inks have been a significant certification approach to improve document anticounterfeiting efficiency. However, the weak photostability and poor durability are two of their major shortcomings. Herein, this article details the development of a photochromic and self-healable hydrogel for advanced anticounterfeiting uses.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
The current research emphasis is on the development of wound dressings that can inhibit bacterial infections and facilitate the treatment of complex wound healing processes. In this study, nanofibrous mats of polyvinyl alcohol/chitosan/ZIF-67(PVA/Cs/ZIF-67) were prepared using an electrospinning technique, to investigate their antibacterial and regenerative properties in a rat model of full-thickness skin wounds. ZIF-67 nanoparticles, with an average size of approximately 373.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Department of Food Science and Technology, Islamic Azad University, Tehran, Iran. Electronic address:
This study investigates developing and characterizing electrospun nanofibers composed of polyvinyl alcohol (PVA) and oxidized xanthan gum (OXG), with nisin as a bioactive agent, for innovative food packaging applications. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed successful crosslinking between PVA and OXG, along with uniform nisin dispersion within the fibers. The inclusion of OXG increased moisture content (MC) and water solubility (WS) while reducing porosity and water vapor permeability (WVP), demonstrating its role as a crosslinker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!