Purpose Of Review: To provide an update of recent studies exploring the role of the gut microbiota and diet in the pathogenesis and treatment of irritable bowel syndrome (IBS).
Recent Findings: The human gut microbiome has been recognized as an important, active source of signaling molecules that explain in part the disorder of the gut brain interaction (DGBI) in IBS. Subsequent changes in the metabolome such as the production of short-chain fatty acids (SCFA) and serotonin are associated with IBS symptoms. Dietary components are recognized as important triggers of IBS symptoms and a diet low in fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) has been shown effective and safe, even when used long-term. Fecal microbiota transplantation (FMT) in IBS has not shown sustained and effective IBS symptom reduction in controlled clinical trials.
Summary: This update elucidates recent developments in IBS as it relates to clinical trial results targeting dietary and gut microbiota interventions. The gut microbiome is metabolically active and affects the bi-directional signaling of the gut-brain axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MED.0000000000000905 | DOI Listing |
Curr Opin Clin Nutr Metab Care
March 2025
Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Purpose Of Review: This review focuses on the latest information regarding the role of complementary feeding practices and food allergen introduction in the prevention of food allergies.
Recent Findings: Early introduction of food allergens for food allergy prevention is recommended by food allergy prevention guidelines and is supported by the latest randomized controlled trials. Diet diversity is recommended, supported by the latest studies from Asia.
Br Poult Sci
March 2025
State Key Laboratory for Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.
View Article and Find Full Text PDFMicrob Biotechnol
March 2025
Nova Institute for Health, Baltimore, Maryland, USA.
Advances in neuromicrobiology and related omics technologies have reinforced the idea that unseen microbes play critical roles in human cognition and behaviour. Included in this research is evidence indicating that gut microbes, through direct and indirect pathways, can influence aggression, anger, irritability and antisocial behaviour. Moreover, gut microbes can manufacture chemicals that are known to compromise cognition.
View Article and Find Full Text PDFCells
March 2025
Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA.
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.
View Article and Find Full Text PDFCells
February 2025
Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland.
An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota by 16s RNA-based metagenomic analysis in mice with inducible acinar transgenic expressions of KrasG12D, and age- and sex-matched control mice that were exposed to inflammatory stimuli and fecal microbiota obtained from mice with PDAC. Time- and inflammatory-dependent stool and pancreatic bacterial composition alterations and stool alpha microbiota diversity reduction were observed only in mice with a Kras mutation that developed advanced pancreatic changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!