Bacillus subtilis is a favored chassis for high productivity of several high value-added product in synthetic biology. Efficient production of recombinant proteins is critical but challenging using this chassis because these expression systems in use, such as constitutive and inducible expression systems, demand for coordination of cell growth with production and addition of chemical inducers. These systems compete for intracellular resources with the host, eventually resulting in dysfunction of cell survival. To overcome the problem, in this study, LuxRI quorum sensing (QS) system from Aliivibrio fischeri was functionally reconstituted in B. subtilis for achieving coordinated protein overproduction with cell growth in a cell-density-dependent manner. Furthermore, the output-controlling promoter, P, was engineered through two rounds of evolution, by which we identified four mutants, P22, P47, P56, and P58 that exhibited elevated activity compared to the original P. By incorporating a strong terminator (TB5) downstream of the target gene further enhanced expression level. The expression level of this system surpasses commonly used promoter-based systems in B. subtilis like P43 and P. The LuxRI QS system proves to be a potent platform for recombinant protein overproduction in B. subtilis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.70007 | DOI Listing |
J Immunol
January 2025
Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States.
The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity.
View Article and Find Full Text PDFJ Immunol
February 2025
Vaccine Research Institute, Université Paris-Est Créteil, Créteil, France.
The 2022 Mpox virus (MPXV) outbreak revitalized questions about immunity against MPXV and vaccinia-based vaccines (VAC-V), but studies are limited. We analyzed immunity against MPXV in individuals infected with MPXV or vaccinated with the licensed modified vaccinia Ankara (MVA) Bavarian Nordic or an experimental MVA-HIVB vaccine. The frequency of neutralizing antibody responders was higher among MPXV-infected individuals than MVA vaccinees.
View Article and Find Full Text PDFMicrob Biotechnol
March 2025
Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.
Recombinant human haemoglobin (rHb) is a tetramer protein with heme as cofactors, which have extensive applications in the fields of biomaterials and biomedical therapeutics. However, due to the poor structural stability, the dissociation of heme, weak oxygen transport efficiency, and lower activity, the utilisation of rHb is severely limited in artificial oxygen carriers. Herein, based on the novel developed high-throughput screening strategies and semi-rational design, the engineered rHb mutant with strong stability and heme-binding ability was obtained.
View Article and Find Full Text PDFFish Physiol Biochem
March 2025
Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
As an environmental estrogen biomarker, the yolk precursor, vitellogenin (Vtg) is widely used in the assessment of estrogen pollution in aquatic environment. Currently, the detection of Vtg in plasma is mainly achieved by enzyme-linked immunosorbent assay (ELISA) method based on Vtg antibodies. However, due to differences in the immunological epitopes of Vtg from various species, Vtg antibodies have low universality.
View Article and Find Full Text PDFCancer Immunol Immunother
March 2025
Medical Genetics Institute, Ho Chi Minh City, Vietnam.
Neoantigen vaccines hold great promise in cancer immunotherapy, but the comparative efficacy of different vaccine platforms, particularly in the context of tumor burden (TB), remains insufficiently studied. In this research, we evaluated the safety and therapeutic efficacy of synthetic long peptide and mRNA-based vaccines, both designed to target identical neoantigens across different Lewis Lung Carcinoma (LLC) tumor burdens. We employed the LLC syngeneic mouse model, a widely used preclinical model for aggressive and immunosuppressive tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!