Enhancing RNA editing efficiency and specificity with engineered ADAR2 guide RNAs.

Mol Ther Nucleic Acids

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

Published: March 2025

RNA editing is a prospective therapeutic approach for correcting harmful mutations, offering the benefits of reversibility and tunability without permanently modifying the genome. However, the relatively low enzymatic activity and the occurrence of off-target editing events present significant challenges, limiting its utility. In response to this limitation, we introduced a novel strategy: strand displacement-responsive ADAR system for RNA editing (SPRING) by adding a "blocking sequence" to form a hairpin guide RNA. This modification significantly improves the efficiency of site-directed RNA editing (SDRE) at various target sites. Furthermore, the use of hairpin guide RNA within the SPRING system enhances the specificity of RNA editing through competitive reactions during target hybridization. In principle, this approach can be employed across various ADAR-based editing systems, offering a novel RNA-editing platform with wide-ranging potential for research, therapy, and biotech applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834095PMC
http://dx.doi.org/10.1016/j.omtn.2025.102447DOI Listing

Publication Analysis

Top Keywords

rna editing
20
hairpin guide
8
guide rna
8
editing
7
rna
6
enhancing rna
4
editing efficiency
4
efficiency specificity
4
specificity engineered
4
engineered adar2
4

Similar Publications

HOXA1 Contributes to Bronchial Epithelial Cell Cycle Progression by Regulating p21/CDKN1A.

Int J Mol Sci

March 2025

Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA.

Airway basal cells proliferate and regenerate airway epithelium after injury. The first step during airway epithelial repair is airway basal cell proliferation to close the wound. Previously, we demonstrated that expression is reduced in airway stem cells isolated from chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Insight into crRNA Processing in P42S and Application of SmutCas9 in Genome Editing.

Int J Mol Sci

February 2025

Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada.

CRISPR-Cas is an adaptive immune system found in bacteria and archaea that provides resistance against invading nucleic acids. Elements of this natural system have been harnessed to develop several genome editing tools, including CRISPR-Cas9. This technology relies on the ability of the nuclease Cas9 to cut DNA at specific locations directed by a guide RNA.

View Article and Find Full Text PDF

SNAP-tag and Halo-tag have been employed to achieve targeted RNA editing by directing the deaminase domain of human ADAR to specific sites in the transcriptome. This targeting is facilitated by short guide RNAs (gRNAs) complementary to the target transcript, which are chemically modified with benzylguanine or chloroalkane moieties to enable covalent binding to the respective self-labeling enzymes. However, broad application of this approach has been limited by challenges such as low scalability, the requirement for specialized chemical expertise and equipment, and labor-intensive protocols.

View Article and Find Full Text PDF

Insights into the compact CRISPR-Cas9d system.

Nat Commun

March 2025

State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Cas9d, the smallest known member of the Cas9 family, employs a compact domain architecture for effective target cleavage. However, the underlying mechanism remains unclear. Here, we present the cryo-EM structures of the Cas9d-sgRNA complex in both target-free and target-bound states.

View Article and Find Full Text PDF

Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.

Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!