A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Organic-inorganic hybridisation strategy for synthesizing durable colored superamphiphobic coatings. | LitMetric

Organic-inorganic hybridisation strategy for synthesizing durable colored superamphiphobic coatings.

Mater Horiz

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.

Published: February 2025

Combining colored coatings with superamphiphobic coatings faces challenges such as low chromaticity, poor durability, and high cost. In this study, we report a simple, rapid, and mass-producible method for preparing colored superamphiphobic coatings based on an organic-inorganic hybridization strategy. We employed metakaolin, and nanosilica, combined with organic dyesand modified with fluorosilanes physical milling, which was subsequently sprayed onto various substrates. By modulating the mass ratio of MK and SiO, the powders were milled to form a cauliflower-like micro/nanocluster structure, creating an air cushion at the solid-liquid interface. By combining this method with the chemical inertness of fluorosilanes, we achieved a substantial increase in coating durability. The coating maintained a high contact angle and low sliding angle after 48 hours of acid and alkali corrosion and UV irradiation. Additionally, it exhibited low adhesion and good self-cleaning and antifouling properties. Notably, the colored coating retained high color fastness to acidic and alkaline vapors and UV irradiation, demonstrating good durability. It maintained color and wettability after 150 days of outdoor exposure. This coating is available in a variety of colours, compatible with different substrates, suitable for large-scale production and has potential applications in heritage restoration and fresco painting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01852dDOI Listing

Publication Analysis

Top Keywords

superamphiphobic coatings
12
colored superamphiphobic
8
organic-inorganic hybridisation
4
hybridisation strategy
4
strategy synthesizing
4
synthesizing durable
4
colored
4
durable colored
4
coatings
4
coatings combining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!