Chemical safety and risk assessment of bio-based and/or biodegradable polymers for food contact: A review.

Food Res Int

Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:

Published: February 2025

Bio-based and/or biodegradable polymers are being developed and applied as a sustainable and innovative alternative to conventional petroleum-based materials for food packaging applications. From the chemical standpoint, bio-based and/or biodegradable polymers present a complex chemical composition that includes additives, monomers, and other starting substances, but also, oligomers, impurities, degradation products, etc. All these compounds may migrate into the food and can be a hazard to the consumers' health. Thus, identifying potential migrants is crucial to assess the safety of these materials. The analytical methods applied to investigate migrants in bio-based and/or biodegradable polymers are reviewed and commented on. Mostly, gas chromatography or liquid chromatography coupled to mass spectrometry and specifically high-resolution mass spectrometry are the techniques of choice. In addition, a summary of recently published migration studies of chemicals from bio-based and/or biodegradable polymers into food simulants and food is provided. Moreover, current approaches to risk assessment of packaging materials are presented and illustrated with examples. Therefore, this review aims to highlight the chemical safety issues raised by biopolymers for food contact applications, that are often overlooked.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2025.115737DOI Listing

Publication Analysis

Top Keywords

bio-based and/or
20
and/or biodegradable
20
biodegradable polymers
20
chemical safety
8
risk assessment
8
polymers food
8
food contact
8
mass spectrometry
8
food
6
bio-based
5

Similar Publications

Dynamic reactive synthesis of bio-based compatibilizer via diepoxide monomers grafting polylactic acid and reactive compatibilization of incompatible polylactic acid/bamboo powder composites.

Int J Biol Macromol

March 2025

School of Chemistry and Chemical Engineering Hainan University, Haikou 570228, Hainan Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China. Electronic address:

The synthesis of monomers with two epoxy structures (EIA) was successfully achieved by adopting holo-biobased feedstocks and in situ solvolysis reaction. The molecular structure of EIA was subjected to characterization through the use of infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance hydrogen spectroscopy (H NMR). The EIA was employed as the epoxy monomers for the synthesis of the grafted compatibilizer, resulting in the successful preparation of a fully bio-based and high epoxy value grafted compatibilizer (PLA-g-EIA (PLE)).

View Article and Find Full Text PDF

A fully sustainable, flexible, and degradable lignocellulose-based composite film enabled by a bio-based polyimine vitrimer.

Int J Biol Macromol

March 2025

Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Traditionally unsustainable and nondegradable fossil-based based plastics have resulted in serious environment pollution problem. Renewable and biodegradable lignocellulose biomass is a promising raw martial for developing environmentally friendly plastic alternatives. However, lignocellulose biomass itself is non-thermoplastic crosslinking networks consisting of cellulose, lignin, and hemicellulose, resulting in a huge challenge to thermoform its into plastic alternatives.

View Article and Find Full Text PDF

Functionalization of slow-release fertilizers and "passive predation microplastics" mechanism for polylactic acid composites.

J Hazard Mater

March 2025

The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

The large-scale use of nonrenewable plastic mulch has resulted in serious agricultural health pollution. Biobased plastic materials with degradable properties offer attractive sustainable alternatives, but the shortcomings of their properties are slow degradation and extremely monofunctional, making their full-scale promotion still challenging. This work proposes a novel functionalized strategy for the multifunctionality empowerment of bio-based PLA materials for environmental protection and crop yield enhancement.

View Article and Find Full Text PDF

The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films.

View Article and Find Full Text PDF

Multiscale Mechanical Characterization of Mineral-Reinforced Wood Cell Walls.

ACS Appl Mater Interfaces

March 2025

Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd, Boca Raton, Florida 33431, United States.

Studying the multiscale mechanics of bio-based composites offers unique perspectives on underlying structure-property relations. Cellular materials, such as wood, are highly organized, hierarchical assemblies of load-bearing structural elements that respond to mechanical stimuli at the microscopic, mesoscopic and macroscopic scale. In this study, we modified oak wood with nanocrystalline ferrihydrite, a widespread ferric oxyhydroxide mineral, and characterized the resulting mechanical properties of the composite at various levels of organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!