Physiologically based pharmacokinetic (PBPK) modeling, a cornerstone of model-informed drug development and model-informed precision dosing, simulates drug disposition in the human body by integrating physiological, biochemical, and physicochemical parameters. While PBPK modeling has advanced globally since the 1970s, China's adoption of this technology has followed a distinctive path, characterized by accelerated growth over the past 2 decades. This review provides a comprehensive analysis of China's contributions to PBPK modeling, addressing knowledge gaps in publication trends, application domains, and platform preferences. A systematic literature search yielded 266 original PBPK research articles from PubMed up to August 08, 2024. The analysis revealed that drug disposition and drug-drug interaction studies constitute the largest proportion of PBPK analyses in China. Chinese universities and hospitals emerge as the leading contributors to PBPK research among institutions in China. Although established commercial PBPK platform such as GastroPlus and Simcyp remain popular within the Chinese pharmaceutical industry, open-source platforms like PK-Sim are gaining significant traction in PBPK applications across China. This review underscores the transformative potential of PBPK modeling in drug development within China, offering valuable insights into future directions and challenges in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psp4.70004 | DOI Listing |
Br J Clin Pharmacol
March 2025
Pharmacokinetics, Dynamics and Metabolism, Sanofi, Shanghai, China.
Aims: Venglustat is an oral glucosylceramide synthase inhibitor under clinical investigation to treat various lysosomal storage diseases. Metabolism is a main pathway for its elimination in humans with CYP3A being the major contributor. This study aims to evaluate effect of CYP3A inhibition (using itraconazole) on venglustat exposure and to develop and validate a physiologically based pharmacokinetic (PBPK) model to assess effects of additional CYP3A inhibitors of varying potencies on venglustat pharmacokinetics.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
March 2025
Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.
Coproporphyrin-I (CP-I) is a selective endogenous biomarker of organic anion-transporting polypeptide (OATP)1B. Multiple CP-I PBPK models with differing input parameters have been reported so far. This study proposed a harmonized CP-I PBPK model and evaluated its ability to predict the effect of ethnicity, SLCO1B1 genotype c.
View Article and Find Full Text PDFJ Pharm Sci
March 2025
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York. Electronic address:
Methylprednisolone (MPL) is widely used in clinical and veterinary medicine to manage inflammation. Plasma profiles and PK parameters in 7 species were digitized from 10 literature sources along with our recent PBPK results in rats. Basic allometric scaling provided reported clearance (CL) and distribution volume (V) from noncompartmental analysis highly correlated with body weights (R > 0.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Pharmaceutics & Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
The study is based on applying Artificial Neural Network (ANN) based machine learning and Response Surface Methodology (RSM) as simultaneous bivariate approaches in developing controlled-release rivaroxaban (RVX) osmotic tablets. The influence of different types of polyethylene oxide, osmotic agents, coating membrane thickness, and orifice diameter on RVX release profiles was investigated. After obtaining the trial formulation data sets from Central Composite Design (CCD), an ANN-based model was trained to get the optimized formulations.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Genentech Inc., South San Francisco, California.
The human kidney is a critical organ for the elimination of numerous drugs and metabolites. The mechanisms of renal drug handling are manifold including unbound filtration, transporter-mediated active secretion, bidirectional passive diffusion, and occasionally active reabsorption and renal metabolism. These mechanisms collectively dictate the fate of drugs at various spatiotemporal points as drug molecules travel through the renal vasculature, tubules, and cells, posing a significant challenge in accurately describing and predicting renal drug disposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!