Polycystic ovary syndrome (PCOS) is a common reproductive disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. The quality of oocytes in PCOS patients remains poor, leading to poor pregnancy outcomes. The molecular mechanisms underlying the poor quality of oocytes in PCOS are not fully understood. This study aimed to explore the potential functional microRNAs (miRNAs) in follicular fluid (FF)-derived extracellular vesicles (FF-EVs) and their role in oocyte developmental competence in PCOS. We analyzed DEmiRNAs in FF-EVs and DEGs in oocytes from PCOS patients and controls using GEO database. We identified 14 potential functional DEmiRNAs in FF-EVs and predicted the target genes of 14 DEmiRNAs using TargetScan. We performed conjoint analyses between the target genes of these miRNAs and DEGs in oocytes, identifying 12 DEmiRNAs whose target genes overlap with oocyte DEGs. Thus, 12 functional DEmiRNAs were the hub miRNAs. These miRNAs were predicted to target genes involved in oocyte development and signaling pathways such as PI3K/Akt, Ras, and MAPK pathways. KEGG enrichment analysis suggested that these miRNAs might impair oocyte developmental competence in PCOS by dysregulating PI3K/Akt signaling pathway. qRT-PCR validated the increase of miR-93-3p and miR-152-3p, and the decrease of miR-625-5p and miR-17-5p in FF-EVs of PCOS patients. This study highlighted the significance of FF-EVs in the pathology of PCOS and revealed the potential role of the increase of miR-93-3p and miR-152-3p, and the decrease of miR-625-5p and miR-17-5p in impairing oocyte developmental competence in PCOS. Further research is needed to elucidate the specific mechanisms by which these miRNAs affect oocyte development and to explore the potential therapeutic implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837631PMC
http://dx.doi.org/10.1186/s13048-025-01619-0DOI Listing

Publication Analysis

Top Keywords

target genes
16
oocytes pcos
12
pcos patients
12
oocyte developmental
12
developmental competence
12
competence pcos
12
pcos
9
follicular fluid
8
polycystic ovary
8
ovary syndrome
8

Similar Publications

Inflammatory Signatures in VEXAS Syndrome, Myelodysplasia Cutis, and Sweet Syndrome.

JAMA Dermatol

March 2025

Service de Dermatologie et Allergologie, Faculté de Médecine, Sorbonne Université, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.

Importance: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease caused by UBA1 somatic variants in hematopoietic progenitor cells, mostly involving adult men. It is associated with inflammatory-related symptoms, frequently involving the skin and hematological disorders. Recently described myelodysplasia cutis (MDS-cutis) is a cutaneous manifestation of myelodysplasia in which clonal myelodysplastic cells infiltrate the skin.

View Article and Find Full Text PDF

Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur.

View Article and Find Full Text PDF

Objective: To evaluate the significance of genetic testing in neonatal- and infantile-onset genetic epilepsies (NIGEP) for enhanced molecular diagnosis with management implications.

Methods: A single-center cohort of 128 patients with NIGEP (aged 0-36 months) from 2010 to 2022 was retrospectively assessed. The diagnostic utility of genetic testing, including next-generation sequencing (NGS) and chromosome-based approaches, was surveyed to determine their impact on antiseizure medication adjustments and precision medicine.

View Article and Find Full Text PDF

The development of standard drugs for some unusual cancers, including estrogen-nonresponsive breast cancer, is somewhat difficult within a very short time. So, considering the current situation, phytoestrogen may be a potential candidate for unraveling chemotherapeutics agents. The reason for this review article is to manifest overall information regarding the effects of phytoestrogen on triple-negative breast cancer (TNBC), along with its related cellular and molecular pathways in different TNBC models.

View Article and Find Full Text PDF

A previously reported clinical trial in familial adenomatous polyposis (FAP) patients treated with erlotinib plus sulindac (ERL + SUL) highlighted immune response/interferon-γ signaling as a key pathway. In this study, we combine intermittent low-dose ERL ± SUL treatment in the polyposis in rat colon (Pirc) model with mechanistic studies on tumor-associated immune modulation. At clinically relevant doses, short-term (16 weeks) and long-term (46 weeks) ERL ± SUL administration results in near-complete tumor suppression in Pirc colon and duodenum (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!