Background: Airway epithelial cells constitute the first line of defense against external noxious stimuli and play crucial roles in the release of epithelial inflammatory cytokines (IL33, IL25 and TSLP), initiating airway allergic inflammatory diseases such as asthma. IL33 plays critical physiological processes in T2-endotype asthma. However, the mechanisms by which allergen exposure triggers IL33 release from airway epithelial cells remain unclear.
Methods: Integrated bioinformatic analysis and transcriptional analysis of bulk RNA-seq and single cell RNA-seq (scRNA-seq) data were used to identify core genes and determine the internal gene network associated with IL33. The expression of EGR1 was subsequently analyzed in vitro in the BEAS-2B cell line and in vivo in a house dust mite (HDM)-induced mouse asthma model. The functional experiments of EGR1 were investigated in vitro via siRNA knockdown and over-expressed plasmid. Chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay validation were subsequently performed to investigate the mechanisms by which EGR1 regulates IL33 secretion.
Results: Bulk RNA-seq and scRNA-seq data identified EGR1 as an epithelial cell-derived gene implicated in IL33 expressions in asthma. The comprehensive analysis of multiple datasets indicated that the high EGR1 expression in epithelial cells may suggest a mechanistic basis of T2-endotype childhood asthma. Moreover, we verified that the expressions of EGR1 in airway epithelial cells were elevated both in vitro and in vivo asthma models. EGR1 regulated the production of IL33. Ultimately, ChIP and luciferase reporter assays confirmed that transcription factor EGR1 directly regulate the transcription of IL33 mRNA.
Conclusions: Our integrated bioinformatic analysis elucidated that EGR1 directly regulates the production of IL33 in T2-asthma and provide insights underlying the progression of asthma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837401 | PMC |
http://dx.doi.org/10.1186/s12967-025-06116-y | DOI Listing |
Rev Med Virol
March 2025
Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA.
SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.
View Article and Find Full Text PDFJ Cell Mol Med
March 2025
Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan.
In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions.
View Article and Find Full Text PDFSemin Diagn Pathol
March 2025
Department of Pathology, Baptist Hospital of Miami, Baptist Health System, Miami, FL, USA.
Non-invasive lobular neoplasia (LN) encompasses atypical lobular hyperplasia (ALH), classic lobular carcinoma in situ (CLCIS), florid lobular carcinoma in situ (FLCIS), and pleomorphic lobular carcinoma in situ (PLCIS). Lobular neoplasia is a neoplastic epithelial proliferation of the terminal duct lobular unit. A defining feature is discohesion due to the loss of E-cadherin, a protein that facilitates cell-to-cell adhesion.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!