A force-sensitive adhesion GPCR is required for equilibrioception.

Cell Res

NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Published: February 2025

Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific Lphn2-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of Lphn2-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41422-025-01075-xDOI Listing

Publication Analysis

Top Keywords

hair cells
24
met response
12
utricular hair
12
gpcr required
8
required equilibrioception
8
lphn2 hair
8
hair
6
cells
6
force-sensitive adhesion
4
adhesion gpcr
4

Similar Publications

Comparative proteomic analysis of the telogen-to-anagen transition in cashmere goat secondary hair follicles.

Front Vet Sci

February 2025

Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Secondary hair follicles (SHFs) in cashmere goats produce high-value cashmere fibers, which cyclic regulation is critical for optimizing cashmere yield and quality. This study explores the phenotypic changes and differential protein expression profiles involved in the telogen-to-anagen transition of SHFs. Through histological observations, proteomic analyses, and immunohistochemical validation, we identified key molecular features and regulatory pathways underlying SHF cyclic renewal.

View Article and Find Full Text PDF

Objective: Preliminary investigations into the swelling of human hair upon absorbing moisture have been performed to better understand the roles of the various hair morphological subcompartments and their response to moisture.

Methods: The isotherms of moisture sorption exhibited by hair were recorded via Dynamic Vapour Sorption (DVS) for separated cuticle and for cortex. Atomic Force Microscopy (AFM) imaging and nanoindentation were used to follow the changes in measured distances on the same areas of cuticle layers and cortex cells from a single fibre cross section, and to evaluate the change in these distances with changes in relative humidity.

View Article and Find Full Text PDF

A type of pancreatic cancer cells form cell clusters from a solitary condition in a primary ciliogenesis-dependent manner.

Med Mol Morphol

March 2025

Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Primary cilia are hair-like projections that protrude on most of mammalian cells and mediate reception of extracellular signals. Numerous studies have demonstrated that a variety of cancer cells including pancreatic ductal adenocarcinoma (PDAC) fail to form primary cilia. The loss of primary cilia is thought to cause carcinogenesis and progressive cell proliferation.

View Article and Find Full Text PDF

The phospholipid scramblase PLSCR5 is regulated by POU4F3 and required for hair cell stereocilia homeostasis and auditory functions.

J Genet Genomics

March 2025

MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210008, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, China. Electronic address:

Hearing relies on the structural and functional integrity of cochlear hair cells, particularly their apical F-actin-filled stereocilia. Phospholipid scramblases are important for maintaining membrane asymmetry, but their roles in the stereocilia and auditory functions are not fully understood. Here, we identify Plscr5 as a downstream target of the transcription factor POU4F3 essential for hair cell function, whose mutation causes human DFNA15 deafness.

View Article and Find Full Text PDF

Single Administration of AAV-mAtp6v1b2 Gene Therapy Rescues Hearing and Vestibular Disorders Caused by Atp6v1b2-Induced Lysosomal Dysfunction in Hair Cells.

Adv Sci (Weinh)

March 2025

Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100853, China.

Haploinsufficiency of the ATP6V1B2, a subunit of V-ATPases, underlies genetic disorders including Dominant deafness-onychodystrophy (DDOD), deafness, onychodystrophy, osteodystrophy, mental retardation and seizures (DOORS), and Zimmermann-Laband syndromes, all characterized by congenital hearing loss and onychodystrophy. Effective therapies for ATP6V1B2-associated hearing loss remain elusive. The study generates a hair cell-specific knockout mouse (Atp6v1b2;Atoh1) recapitulating the human phenotypes, with pathological features including hair cell loss and abnormal lysosomal morphology and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!