Human immunodeficiency virus type-1 (HIV-1) is a complex retrovirus that relies on alternative splicing, translational, and post-translational mechanisms to produce over 15 functional proteins from its single ~10 kb transcriptional unit. Using ribosome profiling, nascent protein labeling, RNA sequencing, and whole-proteomics of infected CD4 + T lymphocytes, we characterized the transcriptional, translational, and post-translational landscape during infection. While viral infection exerts a significant impact on host transcript abundance, global translation rates are only modestly affected. Proteomics data reveal extensive transcriptional and post-translational regulation, with many genes showing opposing trends between transcript/ribosome profiling and protein abundance. These findings highlight a complex regulatory network orchestrating gene expression at multiple levels. Viral ribosome profiling further uncovered extensive non-AUG translation of small peptides from upstream open reading frames (uORFs) within the 5' long terminal repeat, which elicit specific T cell responses in people living with HIV. Conservation of uORF translation among retroviruses, along with TAR sequences, shapes DDX3 dependency for efficient translation of the main viral open reading frames.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836288PMC
http://dx.doi.org/10.1038/s41467-025-56772-3DOI Listing

Publication Analysis

Top Keywords

uorf translation
8
specific cell
8
translational post-translational
8
ribosome profiling
8
open reading
8
reading frames
8
translation
5
non-aug hiv-1
4
hiv-1 uorf
4
translation elicits
4

Similar Publications

Non-AUG HIV-1 uORF translation elicits specific T cell immune response and regulates viral transcript expression.

Nat Commun

February 2025

Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie F-69364, Lyon, France.

Human immunodeficiency virus type-1 (HIV-1) is a complex retrovirus that relies on alternative splicing, translational, and post-translational mechanisms to produce over 15 functional proteins from its single ~10 kb transcriptional unit. Using ribosome profiling, nascent protein labeling, RNA sequencing, and whole-proteomics of infected CD4 + T lymphocytes, we characterized the transcriptional, translational, and post-translational landscape during infection. While viral infection exerts a significant impact on host transcript abundance, global translation rates are only modestly affected.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Copy number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas, CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.

View Article and Find Full Text PDF

Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.

Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.

View Article and Find Full Text PDF

Background: Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far.

Results: We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!