The carbohydrates that fuel gut colonization by S. Typhimurium are not fully known. To investigate this, we designed a quality-controlled mutant pool to probe the metabolic capabilities of this enteric pathogen. Using neutral genetic barcodes, we tested 35 metabolic mutants across five different mouse models with varying microbiome complexities, allowing us to differentiate between context-dependent and context-independent nutrient sources. Results showed that S. Typhimurium uses D-mannose, D-fructose and likely D-glucose as context-independent carbohydrates across all five mouse models. The utilization of D-galactose, N-acetylglucosamine and hexuronates, on the other hand, was context-dependent. Furthermore, we showed that D-fructose is important in strain-to-strain competition between Salmonella serovars. Complementary experiments confirmed that D-glucose, D-fructose, and D-galactose are excellent niches for S. Typhimurium to exploit during colonization. Quantitative measurements revealed sufficient amounts of carbohydrates, such as D-glucose or D-galactose, in the murine cecum to drive S. Typhimurium colonization. Understanding these key substrates and their context-dependent or -independent use by enteric pathogens will inform the future design of probiotics and therapeutics to prevent diarrheal infections such as non-typhoidal salmonellosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836396PMC
http://dx.doi.org/10.1038/s41467-025-56890-yDOI Listing

Publication Analysis

Top Keywords

gut colonization
8
context-dependent -independent
8
mouse models
8
monosaccharides drive
4
drive salmonella
4
salmonella gut
4
colonization
4
context-dependent
4
colonization context-dependent
4
-independent manner
4

Similar Publications

Gallbladder stones alone do not explain the risk of gallbladder cancer (GBC) as the sole etiological factor. Chronic microbial infection, particularly Salmonella, has been implicated in GB carcinogenesis, but its causative role and the underlying mechanisms are largely unknown. We studied gut and gallbladder tissue microbiome through targeted metagenomics to identify pathogenic bacteria in GBC.

View Article and Find Full Text PDF

Stable colonization of the model kissing bug Rhodnius prolixus by Trypanosoma cruzi Y strain.

PLoS Negl Trop Dis

March 2025

Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America.

Trypanosoma cruzi is a single-celled eukaryotic parasite responsible for Chagas disease, a major cause of morbidity and mortality in Central and South America. While the host-pathogen interactions of T. cruzi have been extensively studied in vertebrate models, investigations into its interactions within its insect host remain limited.

View Article and Find Full Text PDF

1. Faecal microbiota transplantation (FMT) is a technique that promotes gut microbiota diversity and abundance by transplantation of faeces into a recipient's gastrointestinal tract multiple routes.2.

View Article and Find Full Text PDF

The gut microbiome is known to have a bidirectional relationship with sex hormone homeostasis; however, its role in mediating interactions between the primary regulatory axes of sex hormones and their productions is yet to be fully understood. We utilized both conventionally raised and gnotobiotic mouse models to investigate the regulatory role of the gut microbiome on the hypothalamic-pituitary-gonadal (HPG) axis. Male and female conventionally raised mice underwent surgical modifications as follows: (1) hormonally intact controls; (2) gonadectomized males and females; (3) gonadectomized males and females supplemented with testosterone and estrogen, respectively.

View Article and Find Full Text PDF

Background And Aims: Accumulating evidence suggests the microbiota is a key factor in Disorders of Gut-Brain Interaction (DGBI), by affecting host immune and neural systems. However, the underlying mechanisms remain elusive due to their complexity and clinical heterogeneity of patients with DGBIs. We aimed to identify neuroimmune pathways that are critical in microbiota-gut-brain communication during de novo gut colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!