Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glutamate-induced neurotoxicity can be attenuated via paracrine mechanisms involving mesenchymal stem cells (MSCs). Conditioned medium (CM) from dental MSCs stimulates neuroprotective effects through trophic factors, and melatonin is a known enhancer of the efficacy of conditional media. Here, we investigated the protective effect of CM derived from stem cells from the apical papilla (SCAPs), supplemented without and with melatonin CM (SCAP-CM and Mel-CM), against glutamate-induced PC12 cell apoptosis via the inhibition of intracellular calcium influx and reactive oxygen species (ROS) production. The results showed that CM effectively reduced glutamate-induced intracellular calcium ion concentration, ROS production, and LDH levels in PC12 cells, elevated mitochondrial membrane potential, and inhibited Bax and Cytochrome c protein expression while increasing Bcl-2 protein expression. Moreover, CM significantly reduced the expression of caspase-9 and caspase-3 to inhibit glutamate-induced PC12 cell apoptosis. Notably, Mel-CM outperformed SCAP-CM in all aspects. This study demonstrates that melatonin can enhance the paracrine effects of stem cells and that Mel-CM mediates neuroprotection by inhibiting neuronal cell damage and apoptosis induced by glutamate-induced neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2025.02.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!