Unlabelled: Background Monoclonal antibodies (mAbs) effectively treat and prevent various diseases, but their clinical application is hindered by issues related to the route of administration and pharmacokinetics (PK). Intravenous (IV) administration is cumbersome, while subcutaneous (SC) administration is hampered by lower bioavailability and potential for immunogenicity. This study evaluated the efficacy of liposomal formulations in enhancing the subcutaneous (SC) delivery and PK of broadly neutralizing antibodies (bNAbs) directed against HIV.
Methods: mAbs were encapsulated in liposomes with and without PEGylation. The liposomes were characterized for particle size, polydispersity index, zeta potential, and release. Thereafter, mice were injected with free mAbs or liposome-encapsulated mAbs, and PK was evaluated.
Results: Liposomes exhibited sizes of 85-92 nm with negative surface charges. Encapsulation efficiencies were 61 % for PEGylated and 58 % for non-PEGylated liposomes. Stability testing over 16 weeks revealed that formulations remained stable at 4 °C but showed leakage at 37 C. Cytotoxicity assays confirmed that the liposomal formulations did not affect cell viability or induce apoptosis in HMEC-1 cells. In vivo, PK studies in humanized FcRn mice indicated that the PEGylated formulations generally had higher half-life, Cmax, AUC, and MRT, and lower CL values compared to their non-PEGylated formulations of the same injection type. Both liposomal formulations showed improvements in bioavailability and extended half-life compared to free mAbs administered via SC and IV routes. Compared to the gold standard of IV free mAb injection, SC injection of antibodies encapsulated in PEGylated liposome had up to 80 % higher bioavailability and 45 % extension of half-life. Compared to the SC free mAb injection, the differences were even more pronounced, with liposomal SC injection having up to 113 % higher bioavailability and 81 % extension of half-life.
Conclusion: Overall, liposomal encapsulation effectively protected SC injected mAbs from degradation, facilitated sustained release, and improved PK profiles, suggesting a promising strategy for enhancing the therapeutic potential of mAbs in conditions that need repeated injections. Future work should further optimize liposomal formulations to increase loading capacity, stability, and release kinetics.
Statement Of Significance: This study addresses a challenge in the administration of monoclonal antibodies (mAbs). Intravenous administration requires additional resources, including nursing staff, making it time-consuming and costly. Although subcutaneous (SC) administration offers a less expensive and more patient-friendly option, it suffers from lower bioavailability and potentially shorter half-life. In this study, we encapsulated mAbs in liposomal formulations specifically designed to enhance their pharmacokinetics by promoting efficient lymphatic transport. Compared with both SC and even IV administration of free antibodies, liposomal formulations of mAbs remarkably improve bioavailability and extend the half-life. This innovative approach combines the comfort of SC administration with enhanced pharmacokinetics, addressing the limitations of current SC delivery methods. Liposomal formulations have the ability to greatly improve SC mAb administration by reducing the amount of antibody needed to be administered, reducing the frequency of injections, and potentially protecting against immunogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2025.02.035 | DOI Listing |
Med Oncol
March 2025
Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
Cancer continues to be a significant global health concern, consistently ranking as one of the leading causes of mortality across diverse populations and socio-economic contexts. Genistein, a soy-derived isoflavonoid, has gained significant attention for its diverse health benefits, particularly its potent anticancer activity. Emerging pre-clinical and clinical evidences highlights its ability to modulate key cellular processes, including apoptosis, autophagy, angiogenesis, metastasis, immune responses and cell cycle regulation.
View Article and Find Full Text PDFRSC Adv
March 2025
Institute of Pharmaceutical Research, GLA University Mathura India.
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates.
View Article and Find Full Text PDFPharm Nanotechnol
March 2025
Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Maharashtra, 440037, India.
Cancer is a leading cause of death and life-threatening disease globally. It is connected to persistent tissue damage and unregulated cellular proliferation. In females, breast cancer plays a crucial role in death rates.
View Article and Find Full Text PDFSci Rep
March 2025
Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
Extracellular vesicles (EVs) are secreted by most cell types and play a central role in cell-cell communication. These naturally occurring nanoparticles have been particularly implicated in cancer, but EV heterogeneity and lengthy isolation methods with low yield make them difficult to study. To circumvent the challenges in EV research, we aimed to develop a unique synthetic model by engineering bioinspired liposomes to study EV properties and their impact on cellular uptake.
View Article and Find Full Text PDFTissue Cell
March 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
A promising strategy for improving the effectiveness, specificity and safety of cancer treatment is targeted medication delivery. Prostate-specific membrane antigen (PSMA) is an effective biomarker for tracking and treating prostate cancer. In this study, we developed a PSMA-targeted drug delivery system by modifying PEGylated liposomal doxorubicin (PLD) with 2-(3-((S)-5-amino-1-carboxypentyl) ureido) pentanedioic acid (ACUPA), a small-molecule PSMA inhibitor, to enhance tumor targeting and therapeutic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!