Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Geniposide, an active compound of Gardeniae Fructus, has antithrombotic, antitumor, neuroprotective, hepatoprotective, cholestatic, and other effects. The present study aimed to investigate the effects of geniposide on NSCLC cells, as well as its underlying mechanism. Two NSCLC cell lines (H1975 and A549) were treated with different doses of geniposide. The proliferation, apoptosis, migratory and invasive capacities, epithelial-mesenchymal transition (EMT), and stem cell characteristics of NSCLC cells were evaluated using a series of in vitro experiments, including colony formation, flow cytometry, wound healing, transwell, western blotting, and tube formations assays. H1975 cells were subcutaneously injected into nude mice to establish the xenograft tumor models, and the models were intraperitoneally injected with 100 mg/kg geniposide or/and 6 mg/kg SKL2001, an agonist of Wnt pathway. Immunohistochemistry, immunofluorescence, and western blotting analyses of the tumors were performed. Geniposide restrained the proliferation of NSCLC cells, as shown by reduced number of colonies and downregulation of Ki67 and PCNA expression levels. Geniposide promoted apoptosis by reducing Bcl-2 expression and increasing Bax expression. Additionally, geniposide inhibited the migratory and invasive abilities of NSCLC cells as well as reversed the EMT by downregulating vimentin, N-cadherin, snail, and slug and upregulating E-cadherin in the absence or presence of TGF-β1. Furthermore, geniposide attenuated the stem cell characteristics of NSCLC cells. In mechanism, geniposide repressed the activation of Wnt/β-catenin pathway. SKL2001 reversed the anti-NSCLC effects of geniposide in vitro. In the xenograft tumor models, 100 mg/kg geniposide suppressed NSCLC tumor growth, which was reversed by SKL2001 treatment. Overall, geniposide inhibits NSCLC progression by reducing cancer cell proliferation, migration, invasiveness, EMT, and stem cell characteristics. This information might provide novel insights into the potential use of geniposide in lung cancer intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10528-025-11030-5 | DOI Listing |
Sci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFFront Oncol
February 2025
Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
Anaplastic lymphoma kinase (ALK) inhibitors have shown efficacy in treating ALK-positive advanced non-small cell lung cancer (NSCLC) patients. However, the effectiveness of ensartinib neoadjuvant therapy remains ambiguous. Herein, we reported that preoperative systemic treatment with the ALK inhibitor ensartinib can be beneficial for treating initially inoperable tumors.
View Article and Find Full Text PDFActa Neuropathol Commun
March 2025
Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China.
Nicotinamide adenine dinucleotide (NAD) plays an important role in tumor progression, but its role in non-small cell lung cancer with brain metastasis (NSCLC BM) remains unclear. Herein, we investigated NAD biosynthesis targeting as a new therapeutic strategy for NSCLC BM. Therapeutic activity of nicotinamide phosphoribosyl transferase (NAMPT) inhibitors was evaluated in mouse models of NSCLC BM and using various assays such as NAD quantitation, cell viability, and apoptosis assays.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
March 2025
Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
Background: Brain metastasis significantly contributes to the failure of targeted therapy in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD). Reduced expression of RNA-binding motif protein 10 (RBM10) is associated with brain metastasis in these patients. However, the mechanism by which RBM10 affects brain metastasis in EGFR-mutated LUAD remains unclear.
View Article and Find Full Text PDFSci Rep
March 2025
Cancer Center, Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Lung cancer is a major cause of cancer-related deaths globally. Targeted therapies, specifically attacking cancer cells based on genetic mutations, offer promising alternatives. ALK (anaplastic lymphoma kinase) fusions result in aberrant proteins that drive cancer growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!