Many animals undergo prolonged dormancy periods to survive cold or dry environments. While humans and most laboratory-based mammals experience a loss of neuromuscular function during inactivity, hibernators possess physiological mechanisms to mitigate this loss. The American bullfrog provides an extreme model of this phenomenon, as brainstem circuits that generate breathing are completely inactive during underwater hibernation, during which motoneurons employ various types of synaptic plasticity to ensure adequate respiratory motor output in the spring. In addition to synapses, voltage-gated ion channels may undergo plasticity to boost neuronal output. Therefore, we hypothesized that motoneuron excitability would also be enhanced after hibernation via alterations in voltage-gated ion channels. We used whole-cell patch clamp electrophysiology to measure membrane excitability and activities of several voltage-gated channels (K+, Ca2+, Na+) from motoneurons that innervate muscles of the buccal pump (hypoglossal) and glottal dilator (vagal). Surprisingly, compared to controls, overwintered hypoglossal motoneurons displayed multiple indices of reduced excitability (hyperpolarized resting membrane potential, lower firing rates, greater lag to first spike). Mechanistically, this occurred via enhanced voltage-gated K+ and reduced Ca2+ channel activity. In contrast, vagal motoneurons excitability was unaltered, but exhibited altered ion channel profiles which seemed to stabilize neuronal output, involving either reduced Ca2+ or K+ currents. Therefore, different motoneurons of the same neuromuscular behavior respond differently to overwintering by altering the function of voltage-gated channels. We suggest divergent responses may reflect different energetic demands of these neurons and/or their specific contribution to breathing and other orofacial behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.249687DOI Listing

Publication Analysis

Top Keywords

voltage-gated ion
12
ion channels
12
neuronal output
8
voltage-gated channels
8
reduced ca2+
8
motoneurons
6
channels
5
voltage-gated
5
plasticity voltage-gated
4
ion
4

Similar Publications

Long-term potentiation (LTP) is proposed to be the molecular mechanism underlying learning and memory in the brain. A key event for LTP is the influx of calcium into post-synaptic neurons via multiple ion channel control systems. One such system involves N-methyl-D-aspartate receptors (NMDARs), which were originally believed to be essential for LTP and new learning.

View Article and Find Full Text PDF

Sexually dimorphic mechanisms of HO-mediated dilation in porcine coronary arterioles with ischemia and endurance exercise training.

J Appl Physiol (1985)

March 2025

Department of Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.

We determined the impact of sex on HO-mediated dilation in coronary arterioles and the contribution of K channels after exercise training in ischemic heart disease. We hypothesized that arterioles from male and female swine would similarly display impaired HO-induced dilation after chronic occlusion that would be corrected by exercise training. Yucatan miniswine were surgically instrumented with an Ameroid constrictor around the proximal left circumflex artery, gradually inducing occlusion and a collateral-dependent myocardium.

View Article and Find Full Text PDF

Golden Gate cloning enables efficient concatemer construction for biophysical analysis of heterozygous potassium channel variants from patients with epilepsy.

Int J Biol Macromol

March 2025

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Moscow Region, Russia. Electronic address:

Missense mutations that cause channelopathies usually occur in a heterozygous setting. Functional voltage-gated potassium channels are tetramers of pore-forming α-subunits. When a variant is co-expressed with the wild-type gene, six distinct tetramers can assemble.

View Article and Find Full Text PDF

Brain excitability is dysfunctional in epilepsy and overlapping neuropsychiatric conditions including autism spectrum disorder (ASD). Epilepsy and ASD are often attributed to malfunctioning coordination between synaptic excitation and inhibition. Dravet syndrome (DS) is a severe form of epilepsy arising from haploinsufficiency of the SCN1A gene that encodes the voltage-gated sodium channel Nav1.

View Article and Find Full Text PDF

The link between in vitro hERG ion channel inhibition and subsequent in vivo QT interval prolongation, a critical risk factor for the development of arrythmias such as Torsade de Pointes, is so well established that in vitro hERG activity alone is often sufficient to end the development of an otherwise promising drug candidate. It is therefore of tremendous interest to develop advanced methods for identifying hERG-active compounds in the early stages of drug development, as well as for proposing redesigned compounds with reduced hERG liability and preserved primary pharmacology. In this work, we present CardioGenAI, a machine learning-based framework for re-engineering both developmental and commercially available drugs for reduced hERG activity while preserving their pharmacological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!