A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-chirality single-wall carbon nanotubes for electrochemical biosensing. | LitMetric

Single-chirality single-wall carbon nanotubes for electrochemical biosensing.

Phys Chem Chem Phys

Department of Mechanical and Materials Engineering, University of Turku, Turku, FI-20014, Finland.

Published: February 2025

Single-wall carbon nanotubes (SWCNTs) exhibit versatile optoelectronic properties closely linked to their structural characteristics, such as chiral angles and diameters. Given this, they are promising materials for biosensors. However, in studies investigating SWCNT-based electrochemical biosensors, raw soot has been mostly used. Soot typically contains a mixture of different chiralities, metallic compounds, and various impurities from the synthesis process. As a result, this mixture significantly limits the reproducibility and precision of SWCNT-based sensors. To ensure consistent sensor performance, we employed an aqueous two-phase extraction (ATPE) technique to purify and sort single-chirality SWCNTs-specifically, semiconducting (6,5) SWCNTs and metallic (6,6) SWCNTs. In addition, we used multiple fabrication methods to ensure that only pure-chirality SWCNTs were deposited onto the electrodes. Our findings emphasise the importance of using surfactant-free systems when investigating the influence of chirality on the electrochemical behaviour of SWCNTs. By using monochiral SWCNTs, we achieved precise control over their concentration and density, allowing us to assess their electrochemical properties accurately. Our results reveal that the adsorption-controlled process of the inner sphere redox probe occurs on (6,5) SWCNTs, while a diffusion-controlled process is observed on (6,6) SWCNTs. These findings provide valuable insights that will enhance the performance of SWCNT-based electrochemical biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp04206aDOI Listing

Publication Analysis

Top Keywords

single-wall carbon
8
carbon nanotubes
8
swcnts
8
swcnt-based electrochemical
8
electrochemical biosensors
8
electrochemical
5
single-chirality single-wall
4
nanotubes electrochemical
4
electrochemical biosensing
4
biosensing single-wall
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!