Purpose: has evolved complex immunomodulatory mechanisms mediated by excretory-secretory products (ESL1) that enable its survival in the host. Consequently, ESL1 antigens display excellent potential for treating autoimmune diseases such as multiple sclerosis (MS). However, whether timely controlled delivery of ESL1 antigens in vivo, as in natural infections, could enhance its therapeutic potential for MS is still unknown.
Methods: To test this, we encapsulated ESL1 antigens into biodegradable poly (lactide-co-glycolic) acid (PLGA) nanofibers by emulsion electrospinning as a delivery system and assessed their release dynamics in vitro, and in an animal MS model, experimental autoimmune encephalomyelitis (EAE), induced 7 days after PLGA/ESL1 subcutaneous implantation. PLGA/ESL1 effects on EAE symptoms were monitored along with multiple immune cell subsets in target organs at the peak and recovery of EAE. Gut barrier function and microbiota composition were analyzed using qPCR, 16S rRNA sequencing, and metabolomic analyses.
Results: ESL1 antigens, released from PLGA and drained via myeloid antigen-presenting cells through lymph nodes, protected the animals from developing EAE symptoms. These effects correlated with reduced activation of myeloid cells, increased IL-10 expression, and reduced accumulation of proinflammatory natural killer (NK) cells, T helper (Th)1 and Th17 cells in the spleen and central nervous system (CNS). Additionally, CD4CD25FoxP3 regulatory T cells and IL-10-producing B cells were expanded in PLGA/ESL1-treated animals, compared to control animals. The migration of ESL1 to the guts correlated with locally reduced inflammation and gut barrier damage. Additionally, PLGA/ESL1-treated animals displayed an unaltered microbiota characterized only by a more pronounced protective mevalonate pathway and expanded short-chain fatty acid-producing bacteria, which are known to suppress inflammation.
Conclusion: The delivery of ESL1 antigens via biodegradable electrospun PLGA nanofiber implants efficiently protected the animals from developing EAE by inducing a beneficial immune response in the spleen, gut, and CNS. This platform provides excellent grounds for further development of novel MS therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830953 | PMC |
http://dx.doi.org/10.2147/IJN.S499161 | DOI Listing |
Int J Nanomedicine
February 2025
Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
Purpose: has evolved complex immunomodulatory mechanisms mediated by excretory-secretory products (ESL1) that enable its survival in the host. Consequently, ESL1 antigens display excellent potential for treating autoimmune diseases such as multiple sclerosis (MS). However, whether timely controlled delivery of ESL1 antigens in vivo, as in natural infections, could enhance its therapeutic potential for MS is still unknown.
View Article and Find Full Text PDFFront Immunol
April 2022
Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the - and - ligands of polySia that establish signaling networks.
View Article and Find Full Text PDFPLoS Negl Trop Dis
April 2020
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Trichinella spiralis can modulate host immune responses to retain a suitable environment for its long-term survival. Incidentally, the parasite elicits regulatory effects through immunomodulatory molecule release, which can suppress host inflammation and may be used for the treatment of unrelated inflammatory diseases in someday. Here we identified and characterized a novel T.
View Article and Find Full Text PDFGlia
August 2016
Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
Microglia are tissue macrophages and mediators of innate immune responses in the brain. The protein-modifying glycan polysialic acid (polySia) is implicated in modulating microglia activity. Cultured murine microglia maintain a pool of Golgi-confined polySia, which is depleted in response to lipopolysaccharide (LPS)-induced activation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2016
Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan. Electronic address:
Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated.
Methods And Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!