Excess fibroblast growth factor 23 (FGF23), a mature osteocyte-derived phosphaturic hormone, causes chronic hypophosphatemic osteomalacia in adults. This rare condition was recently reported in 2 alcoholic patients, with marked improvement upon cessation of alcohol consumption, suggesting a link between alcohol and FGF23-related hypophosphatemia within the highly limited cases. This study aimed to investigate whether the source of excess FGF23 in alcohol-induced FGF23-related hypophosphatemic osteomalacia is the bone or the other organs. To achieve this goal, an immunohistochemical approach for the bone obtained from a patient was employed. Initial attempts at quantifying FGF23 in the bone using conventional immunohistochemistry (IHC) faced issues in quantifiability and sensitivity for low FGF23 expression levels. Therefore, next-generation IHC with phosphor-integrated dots (PIDs) was applied, which enabled the quantification of FGF23 expression in the bone across a broad range. Preliminary analyses using IHC with PIDs on normal bone samples ( = 12) provided a reference level (154.5 PID particles per cell). IHC with PIDs quantified suppressed physiological FGF23 expression in the bone samples from 3 patients with tumor-induced osteomalacia, where FGF23 is oversecreted from a tumor (13.6 PID particles per cell). Subsequently, bone samples obtained from a 70-yr-old male with alcohol-induced FGF23-related hypophosphatemic osteomalacia were analyzed, showing a higher number of PID particles per cell (199.4 PID particles per cell) than the reference level. This study suggests that orthotopic, bone-derived FGF23 is implicated in alcohol-induced FGF23-related hypophosphatemic osteomalacia. Furthermore, the study also demonstrated that highly sensitive IHC with PIDs could aid in the differential diagnosis of FGF23-related hypophosphatemia of unknown origin. Specifically, a bone sample with a low number of PID particles per cell indicates an excess ectopic secretion of FGF23; a bone sample with a normal to high number of PID particles per cell indicates an excess orthotopic secretion of FGF23.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831984PMC
http://dx.doi.org/10.1093/jbmrpl/ziaf010DOI Listing

Publication Analysis

Top Keywords

pid particles
24
particles cell
24
hypophosphatemic osteomalacia
16
alcohol-induced fgf23-related
12
fgf23-related hypophosphatemic
12
fgf23 expression
12
ihc pids
12
bone samples
12
number pid
12
bone
10

Similar Publications

This paper presents the use of a static synchronous compensators (STATCOM) device to improve the low voltage ride through (LVRT) ability of an electrical network consisting of wind farms that produce 9 MW and 1 MW PV stations during grid faults. A hybrid energy model is connected with 100 MVAR STATCOM at the point of common coupling (PCC) through line to line fault occurs on the grid. STATCOM control is used to detect the voltage at the PCC bus through occurring line to line (LL) faults by compensating reactive energy.

View Article and Find Full Text PDF

Functional electrical stimulation (FES), a rehabilitation technique, typically relies on physiotherapists using trial-and-error tests to determine effective stimulation patterns. Therefore, this study proposed a kind of pedal hill modeling to establish an optimal stimulus mode with the maximum torque efficiency optimization objective. This study also proposed a new model based on the particle swarm optimization (PSO) algorithm, the back propagation (BP) neural network algorithm, and the proportional integral derivative (PID) control composite algorithm.

View Article and Find Full Text PDF

Flower fertilization optimization algorithm with application to adaptive controllers.

Sci Rep

February 2025

Department of Structural and Geotechnical Engineering, Széchenyi István University, Hungary University, Gyor, Hungary.

This article presents the Flower Fertilization Optimization Algorithm (FFO), a novel bio-inspired optimization technique inspired by the natural fertilization process of flowering plants. The FFO emulates the behavior of pollen grains navigating through the search space to fertilize ovules, effectively balancing exploration and exploitation mechanisms. The developed FFO is theoretically introduced through the article and rigorously evaluated on a diverse set of 32 benchmark optimization problems, encompassing unimodal, multimodal, and fixed-dimension functions.

View Article and Find Full Text PDF

Excess fibroblast growth factor 23 (FGF23), a mature osteocyte-derived phosphaturic hormone, causes chronic hypophosphatemic osteomalacia in adults. This rare condition was recently reported in 2 alcoholic patients, with marked improvement upon cessation of alcohol consumption, suggesting a link between alcohol and FGF23-related hypophosphatemia within the highly limited cases. This study aimed to investigate whether the source of excess FGF23 in alcohol-induced FGF23-related hypophosphatemic osteomalacia is the bone or the other organs.

View Article and Find Full Text PDF

This study presents a method for the active control of a follow-up lower extremity exoskeleton rehabilitation robot (LEERR) based on human motion intention recognition. Initially, to effectively support body weight and compensate for the vertical movement of the human center of mass, a vision-driven follow-and-track control strategy is proposed. Subsequently, an algorithm for recognizing human motion intentions based on machine learning is proposed for human-robot collaboration tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!