Radiofrequency ablation (RFA), a thermoablative treatment for small hepatocellular carcinoma (HCC), has limited therapeutic benefit for advanced HCC patients with large, multiple, and/or irregular tumors owing to incomplete RFA (iRFA) of the tumor mass. It is first identified that iRFA-treated tumors exhibited increased pyruvate kinase M2 (PKM2) expression, exacerbated tumor immunosuppression featured with increased tumor infiltration of suppressive immune cells and increased proliferation, and programmed cell death ligand 1 expression of cancer cell and ultimately a poor prognosis. Herein, a multifunctional nanomedicine is fabricated by encapsulating nanoassemblies of anti-PD-L1 and spermidine-grafted oxidized dextran with shikonin-containing lipid bilayers to reverse iRFA-induced treatment failure. Shikonin, a PKM2 inhibitor, is used to suppress glycolysis in cancer cells, while anti-PD-L1 and spermidine are introduced to collectively reprogram the proliferation and functions of infiltrated CD8+ T lymphocytes. Combined with iRFA, which promoted the exposure of tumor antigens, the intravenous injection of liposomal SPS-NPs effectively stimulated dendritic cell maturation and reversed tumor immunosuppression, thus eliciting potent antitumor immunity to synergistically suppress the growth of residual tumor masses and lung metastasis. The as-prepared liposomal nanomedicine is promising for potentiating the therapeutic benefits of RFA toward advanced HCC patients through reprogramming iRFA-induced tumor immunosuppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202403979 | DOI Listing |
J Genet Eng Biotechnol
March 2025
Karachi Medical and Dental College, Pakistan. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a five-year survival rate of just 7%. Its late diagnosis and limited treatment options contribute to poor outcomes. Immunotherapy has had little success due to PDAC's dense and immunosuppressive tumor environment.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Blue rubber bleb nevus syndrome (BRBNS) is a rare congenital clinical syndrome characterized by venous malformations in multiple organs, including the skin, gastrointestinal tract, liver, and lungs. In June 2022, Third Xiangya Hospital of Central South University admitted a rare case of BRBNS. The patient was hospitalized due to abdominal distension and a history of recurrent hematochezia.
View Article and Find Full Text PDFCytokine
March 2025
Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; CTOAM | Cancer Treatment Options & Management, Vancouver, British Columbia, Canada. Electronic address:
Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation.
View Article and Find Full Text PDFHepatology
March 2025
Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
Background And Aims: Portal vein tumor thrombosis (PVTT), an indicator of clinical metastasis, significantly shortens hepatocellular carcinoma (HCC) patients' lifespan, and no effective treatment has been established. We aimed to illustrate mechanisms underlying PVTT formation and tumor metastasis, and identified potential targets for clinical intervention.
Approach And Results: Multi-omics data of 159 HCC patients (including 37 cases with PVTT) was analyzed to identify contributors to PVTT formation and tumor metastasis.
J Immunol
January 2025
Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!