Recent Advances in the Design of Biomedical Materials for Cancer Theranostics.

Curr Med Chem

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an, Shaanxi, China.

Published: January 2025

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986733202241113163142DOI Listing

Publication Analysis

Top Keywords

advances design
4
design biomedical
4
biomedical materials
4
materials cancer
4
cancer theranostics
4
advances
1
biomedical
1
materials
1
cancer
1
theranostics
1

Similar Publications

Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing.

Langmuir

March 2025

Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.

Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.

View Article and Find Full Text PDF

Nonmonotonous Translocation Dynamics of Highly Deformable Particles across Channels.

ACS Nano

March 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

The translocation dynamics of cells and particles through geometric constrictions are critical in biological and biomedical processes from splenic filtration to tumor metastasis. While particle stiffness plays a key role, its role in highly nonequilibrium states remains poorly understood. Here, we present a multiscale model to investigate the impact of particle stiffness on the translocation dynamics in microfluidic channels.

View Article and Find Full Text PDF

Complete Valorization of Cashew Nutshell Waste Enriched with Sulfur Copolymer for Efficient Mercury Removal.

Chem Asian J

March 2025

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, India.

Integrating sustainable raw materials with efficient synthesis is key to advancing eco-friendly solutions. Renewable feedstocks like cashew nutshells (CNS) and elemental sulfur, an industrial byproduct, are underutilized resources. This study presents a simple method to valorize CNS and sulfur, creating a copolymer composite designed for efficient mercury removal from contaminated water.

View Article and Find Full Text PDF

Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear.

View Article and Find Full Text PDF

Nanoparticle-Based Pulmonary Immune Engineering.

Annu Rev Chem Biomol Eng

March 2025

1Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; email:

Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!