Objectives: To examine the correlation of apparent diffusion coefficient (ADC), diffusion weighted imaging (DWI), and T1 contrast enhanced (T1-CE) with Ki-67 in primary central nervous system lymphomas (PCNSL). And to assess the diagnostic performance of MRI radiomics-based machine-learning algorithms in differentiating the high proliferation and low proliferation groups of PCNSL.

Methods: 83 patients with PCNSL were included in this retrospective study. ADC, DWI and T1-CE sequences were collected and their correlation with Ki-67 was examined using Spearman's correlation analysis. The Kaplan-Meier method and log-rank test were used to compare the survival rates of the high proliferation and low proliferation groups. The radiomics features were extracted respectively, and the features were screened by machine learning algorithm and statistical method. Radiomics models of seven different sequence permutations were constructed. The area under the receiver operating characteristic curve (ROC AUC) was used to evaluate the predictive performance of all models. DeLong test was utilized to compare the differences of models.

Results: Relative mean apparent diffusion coefficient (rADCmean) (ρ=-0.354, p = 0.019), relative mean diffusion weighted imaging (rDWImean) (b = 1000) (ρ = 0.273, p = 0.013) and relative mean T1 contrast enhancement (rT1-CEmean) (ρ = 0.385, p = 0.001) was significantly correlated with Ki-67. Interobserver agreements between the two radiologists were almost perfect for all parameters (rADCmean ICC = 0.978, 95%CI 0.966-0.986; rDWImean (b = 1000) ICC = 0.931, 95% CI 0.895-0.955; rT1-CEmean ICC = 0.969, 95% CI 0.953-0.980). The differences in PFS (p = 0.016) and OS (p = 0.014) between the low and high proliferation groups were statistically significant. The best prediction model in our study used a combination of ADC, DWI, and T1-CE achieving the highest AUC of 0.869, while the second ranked model used ADC and DWI, achieving an AUC of 0.828.

Conclusion: rDWImean, rADCmean and rT1-CEmean were correlated with Ki-67. The radiomics model based on MRI sequences combined is promising to distinguish low proliferation PCNSL from high proliferation PCNSL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834475PMC
http://dx.doi.org/10.1186/s12880-025-01585-5DOI Listing

Publication Analysis

Top Keywords

high proliferation
16
low proliferation
12
proliferation groups
12
adc dwi
12
radiomics model
8
primary central
8
central nervous
8
nervous system
8
system lymphomas
8
apparent diffusion
8

Similar Publications

Postoperative adhesions are abrogated by a sustained-release anti-JUN therapeutic in preclinical models.

Sci Transl Med

March 2025

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.

Postoperative abdominal adhesions are the leading cause of bowel obstruction and a cause of chronic pain and infertility. Adhesion formation occurs after 50 to 90% of abdominal operations and has no proven preventative or treatment strategy. Abdominal adhesions derive primarily from the visceral peritoneum and are composed of polyclonally proliferating tissue-resident fibroblasts.

View Article and Find Full Text PDF

To provide protection, anticipatory T cell-dependent immunity is reliant on the generation and maintenance of a naïve T cell repertoire, which is sufficiently diverse to ensure recognition of newly encountered antigens. Therefore, under steady-state conditions, a given individual needs to maintain a large pool of naïve T cells, ready to respond to potential threats. Here, we demonstrate that N-myc downstream-regulated gene 3 (Ndrg3) is essential for naïve T cell stability.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative condition marked by the gradual degeneration of dopaminergic neurons, resulting in a range of disabling motor and non-motor symptoms. Despite advances, the molecular mechanisms underlying PD remain elusive, and effective biomarkers and therapeutic targets are limited. Recent studies suggest that mitochondrial dysfunction and dysregulated cellular metabolism are central to PD pathogenesis.

View Article and Find Full Text PDF

Background: Achaete-Scute complex homolog 1 (ASCL1) is a multi-faceted pro-neural transcription factor, playing a role in several processes during embryonic development and into adulthood, including neural progenitor proliferation and neuronal differentiation. This versatility is achieved through tightly controlled expression of ASCL1, either via integrating intracellular signalling cues or stabilisation at the protein level. The role of kinases in ASCL1-mediated neurogenesis is emerging, but to date few kinases have been attributed to act directly or indirectly on ASCL1.

View Article and Find Full Text PDF

Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!