Monitoring the early-stage healing of severe traumatic nerve injuries is essential to gather physiological and pathological information for timely interventions and optimal clinical outcomes. Traditional diagnostic methods relying on physical examinations, imaging tools, and intraoperative electrophysiological testing present great challenges in continuous and remote monitoring. While implantable peripheral nerve interfaces provide direct access to nerve fibers for precise interrogation and modulation, conventional non-degradable designs pose limited utilization in nerve injury rehabilitation. Here, we introduce a biodegradable and restorative neural interface for wireless real-time tracking and recovery of long-gap nerve injuries. Leveraging machine learning techniques, this electronic platform deciphers nerve recovery status and identifies traumatic neuroma formation at the early phase, enabling timely intervention and significantly improved therapeutic outcomes. The biodegradable nature of the device eliminates the need for retrieval procedures, reducing infection risks and secondary tissue damage. This research sheds light on bioresorbable multifunctional peripheral nerve interfaces for probing neuropathic injuries, offering vital information for early diagnosis and therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832765PMC
http://dx.doi.org/10.1038/s41467-025-56089-1DOI Listing

Publication Analysis

Top Keywords

biodegradable restorative
8
neural interface
8
neuropathic injuries
8
nerve injuries
8
peripheral nerve
8
nerve interfaces
8
nerve
7
restorative peripheral
4
peripheral neural
4
interface interrogation
4

Similar Publications

A key molecule in cellular metabolism, citrate is essential for lipid biosynthesis, energy production, and epigenetic control. The etiology of Alzheimer's disease (AD), a progressive neurodegenerative illness marked by memory loss and cognitive decline, may be linked to dysregulated citrate transport, according to recent research. Citrate transporters, which help citrate flow both inside and outside of cells, are becoming more and more recognized as possible participants in the molecular processes underlying AD.

View Article and Find Full Text PDF

Study on the pharmacodynamic substances and mechanism of hepatoprotection of Acanthus ilicifolius Linn.

Phytomedicine

March 2025

Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, PR China. Electronic address:

Background: The coastal wetland mangrove plant Acanthus ilicifolius l. (AI) is used as traditional medicine for liver protection and liver fibrosis treatment, but the pharmacodynamics of the hepatoprotective substance and the mechanisms of liver protection are not clear.

Purpose: This work aimed to assess the liver-protective ability of AI and elucidate the pharmacodynamics of the hepatoprotective substance of AI responsible for its liver activity.

View Article and Find Full Text PDF

Tianjihuang compound alleviates aflatoxin B-induced hepatic steatosis and fibrosis by targeting PPARα-TGF-β pathway in ducklings.

Poult Sci

March 2025

Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing 402460, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China.

Aflatoxin B (AFB), a potent mycotoxin, poses a significant threat to the poultry industry, particularly affecting the health and growth of ducklings. The present study aimed to investigate the therapeutic effects and mechanisms of the Tianjihuang compound (HRS), a traditional Chinese medicine formulation, on AFB-induced chronic toxicity in ducklings. Firstly, 30 ingredients, including neochlorogenic acid, kaempferol 3-alpha-D-galactoside, quercetin, hispidulin, caffeic acid, and myricetin, were identified from HRS with UPLC-MS/MS method.

View Article and Find Full Text PDF

Despite recent advances in the understanding of the impacts of microplastics (MPs) on the soil microbiome under short-term exposure, little information is known regarding the long-term ecological effects of MPs in soil, especially biodegradable MPs (BMPs). Here, we systematically compared the effects of four prevalent microplastics, including two conventional MPs (CMPs) and two BMPs, on the soil microbiome over short- and long-term exposure durations. The soil microbial community were not significantly affected by the MP addition under short-term exposure; however, the soil microbial composition was obviously impacted by MP exposure under long-term exposure, some MP-adapted microbes (e.

View Article and Find Full Text PDF

Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function and polarization, which is crucial to the resolution of inflammation. The contribution of lipid synthesis to proinflammatory macrophage responses is well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!