Oocytes with meiotic defects are assumed to be eliminated by apoptosis in the perinatal period. However, oocyte apoptosis caused by meiotic defects has not been well analyzed, partly because of the great technical demands of tissue sectioning perinatal ovaries. In the present study, we applied a squash method for immunohistochemical analysis of perinatal mouse ovaries as a substitute for tissue sectioning. As a result, we could show different kinetics of apoptosis caused by DMC1- and SPO11-deficiencies, indicating that DNA damage-induced apoptosis precedes asynapsis-induced apoptosis in mouse oocytes. Double-mutant analysis revealed that only asynapsis-induced apoptosis was significantly dependent on HORMAD2. The present method is simple, easy, and able to analyze a sufficient number of oocytes to detect infrequent events in a single specimen, accelerating detailed immunohistochemical analyses of mammalian ovaries during the fetal and perinatal periods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-025-02358-5DOI Listing

Publication Analysis

Top Keywords

apoptosis caused
12
mammalian ovaries
8
oocyte apoptosis
8
meiotic defects
8
tissue sectioning
8
asynapsis-induced apoptosis
8
apoptosis
7
perinatal
5
simple immunohistochemical
4
immunohistochemical method
4

Similar Publications

Cell-free supernatant of Clostridium leptum inhibits breast cancer cell proliferation.

Lett Appl Microbiol

March 2025

Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Breast cancer has emerged as the leading cause of global cancer incidence, surpassing lung cancer. Accumulating evidence suggests that probiotics exhibit inhibitory effect on breast cancer progression, highlighting the need to identify gut flora-derived probiotics with potential anti-breast cancer properties. Here, we investigated the effect of the cell-free supernatant of C.

View Article and Find Full Text PDF

ZNF667 alleviates the inflammatory damage in intervertebral disc degeneration via inhibiting NF-κB signaling pathway.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.

View Article and Find Full Text PDF

Neuronal degeneration, mitochondrial dysfunction, and disturbance of movements induced by rotenone in the ascidian Styela plicata.

Neurotoxicology

March 2025

Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Macaé, Rio de Janeiro, 27965-045, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Macaé, Rio de Janeiro, 27965-045, Brazil. Electronic address:

Parkinson's disease (PD), a movement disorder caused by dopaminergic degeneration in the midbrain, has been induced in various organisms after injection of different neurotoxins, such as rotenone (ROT), which affect mitochondrial complex I. Due to the conserved characteristics of ascidians, these animals constitute an interesting model for comparative and genetic studies of neurodegenerative diseases. In this study, we investigated the effects of ROT on the ascidian nervous system, evaluating apoptosis, catecholaminergic enzymes, behavioral deficits, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Galectin-3 activates microglia and promotes neurological impairment via NLRP3/pyroptosis pathway following traumatic brain injury.

Brain Res

March 2025

Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:

Background: Externally caused traumatic brain injury (TBI) poses a woeful worldwide health concern, bringing about disability, death, and prolonged neurological impairment. Increased galectin-3 levels have been linked to unfavorable outcomes in several neurological conditions. This study explores the role of galectin-3 in TBI, specifically examining its contribution to neuroinflammation.

View Article and Find Full Text PDF

Cancers caused by high-risk human papillomavirus (HPV) remain a significant health threat resulting in more than 300,000 deaths, annually. Persistent expression of two HPV oncogenes, E6 and E7, are necessary for cancer development and progression. E6 has several functions contributing to tumorigenesis one of which is blocking programmed cell death, apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!