The application of uranium (U) in the nuclear energy and defense industry has driven U mining activities, leading to subsequent U contamination. Understanding the toxicity and detoxification mechanism of U in plants is crucial for enhancing the efficiency of phytoremediation efforts in U-contaminated soils. The present study investigated the toxicity of uranium (U) in radish and its impact on physiological and molecular responses. The application of U (5-25 μM) for 3 days significantly inhibited the elongation of radish lateral roots, and the lateral root length decreased by 35.6%-60.7% compared with the control. Under U stress, radish root tip meristem cells suffered DNA damage, fortunately the cells remained viable. To repair damaged DNA, the expression of genes involved in DNA repair (e.g. RAD2, XPC, BLM) was up-regulated, and the expression of genes involved in cell cycle was down-regulated (e.g. CYCB, CDKB). Under U stress, the expression of respiratory burst oxidase homologs (RBOHs) genes in radish roots up-regulated, which caused ROS burst, and then enhanced autophagy by promoting the expression of autophagy related genes (ATGs). Simultaneously, the glutathione (GSH) content increased, and the gene expression levels and activities of antioxidant enzymes (e.g. catalase) were increased, which enhanced the antioxidant capacity of root cells. Moreover, ubiquitin-proteasome system (UPS) (e.g. E3 ligase genes NEDD4) was involved in the activation of DNA repair, GSH synthesis and autophagy. In summary, DNA repair, autophagy, and antioxidant systems were activated in radish roots, which promoted the survival of apical meristem cells under U stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2025.109641 | DOI Listing |
Sci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFCell Mol Life Sci
March 2025
Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway.
View Article and Find Full Text PDFMed Res Rev
March 2025
Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, Bangladesh.
The development of standard drugs for some unusual cancers, including estrogen-nonresponsive breast cancer, is somewhat difficult within a very short time. So, considering the current situation, phytoestrogen may be a potential candidate for unraveling chemotherapeutics agents. The reason for this review article is to manifest overall information regarding the effects of phytoestrogen on triple-negative breast cancer (TNBC), along with its related cellular and molecular pathways in different TNBC models.
View Article and Find Full Text PDFCells
February 2025
Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, TX 78229, USA.
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear.
View Article and Find Full Text PDFCells
February 2025
Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
The second and third most frequently diagnosed cancers worldwide are breast (2.3 million new cases) and colorectal (1.9 million new cases), respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!