Multi-stage deep learning artifact reduction for parallel-beam computed tomography.

J Synchrotron Radiat

Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

Published: March 2025

Computed tomography (CT) using synchrotron radiation is a powerful technique that, compared with laboratory CT techniques, boosts high spatial and temporal resolution while also providing access to a range of contrast-formation mechanisms. The acquired projection data are typically processed by a computational pipeline composed of multiple stages. Artifacts introduced during data acquisition can propagate through the pipeline and degrade image quality in the reconstructed images. Recently, deep learning has shown significant promise in enhancing image quality for images representing scientific data. This success has driven increasing adoption of deep learning techniques in CT imaging. Various approaches have been proposed to incorporate deep learning into computational pipelines, but each has limitations in addressing artifacts effectively and efficiently in synchrotron CT, either in properly addressing the specific artifacts or in computational efficiency. Recognizing these challenges, we introduce a novel method that incorporates separate deep learning models at each stage of the tomography pipeline - projection, sinogram and reconstruction - to address specific artifacts locally in a data-driven way. Our approach includes bypass connections that feed both the outputs from previous stages and raw data to subsequent stages, minimizing the risk of error propagation. Extensive evaluations on both simulated and real-world datasets illustrate that our approach effectively reduces artifacts and outperforms comparison methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892890PMC
http://dx.doi.org/10.1107/S1600577525000359DOI Listing

Publication Analysis

Top Keywords

deep learning
20
computed tomography
8
image quality
8
specific artifacts
8
learning
5
artifacts
5
multi-stage deep
4
learning artifact
4
artifact reduction
4
reduction parallel-beam
4

Similar Publications

Exploring the Role of Immersive Virtual Reality Simulation in Health Professions Education: Thematic Analysis.

JMIR Med Educ

March 2025

Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, 550 First Avenue, 15th Floor, Medical ICU, New York, NY, 10016, United States, 1 2122635800.

Background: Although technology is rapidly advancing in immersive virtual reality (VR) simulation, there is a paucity of literature to guide its implementation into health professions education, and there are no described best practices for the development of this evolving technology.

Objective: We conducted a qualitative study using semistructured interviews with early adopters of immersive VR simulation technology to investigate use and motivations behind using this technology in educational practice, and to identify the educational needs that this technology can address.

Methods: We conducted 16 interviews with VR early adopters.

View Article and Find Full Text PDF

Objectives: To develop a deep learning (DL) model based on ultrasound (US) images of lymph nodes for predicting cervical lymph node metastasis (CLNM) in postoperative patients with differentiated thyroid carcinoma (DTC).

Methods: Retrospective collection of 352 lymph nodes from 330 patients with cytopathology findings between June 2021 and December 2023 at our institution. The database was randomly divided into the training and test cohort at an 8:2 ratio.

View Article and Find Full Text PDF

Brain age gap (BAG), the deviation between estimated brain age and chronological age, is a promising marker of brain health. However, the genetic architecture and reliable targets for brain aging remains poorly understood. In this study, we estimate magnetic resonance imaging (MRI)-based brain age using deep learning models trained on the UK Biobank and validated with three external datasets.

View Article and Find Full Text PDF

There is great interest in using genetically tractable organisms such as to gain insights into the regulation and function of sleep. However, sleep phenotyping in has largely relied on simple measures of locomotor inactivity. Here, we present FlyVISTA, a machine learning platform to perform deep phenotyping of sleep in flies.

View Article and Find Full Text PDF

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!