NMDA receptors (NMDARs) play essential roles in neuronal development, survival, and synaptic plasticity, to name a few. However, dysregulation in receptors' activity can lead to neuronal and synaptic damage, contributing to the development of various brain pathologies. Current pharmacological treatments targeting NMDARs remain limited, for instance due to insufficient receptor selectivity and poor spatial targeting. Genetic approaches hold promise to overcome some of these issues; however, require genetically encodable NMDAR-modulating peptides, which are scarce. Here, we explored NMDAR-selective peptide toxins from marine cone snails, which resulted in the necessary engineering of a posttranslational modification-free variant of Conantokin-P ( Con-P). The form is essential for expression in mammalian cells. We systematically explored the variant and discovered that Con-P maintains its ability to inhibit GluN2B-containing receptors, but uniquely acquired the ability to potentiate GluN2A-containing synaptic receptors. We then engineered a secreted Con-P that readily enhances NMDAR-mediated synaptic events in primary hippocampal neurons, and mitigates neuronal damage induced by staurosporine. We therefore provide a genetically encodable, subtype selective, and secreted bimodulator of NMDARs. This new variant and approach should pave the way for the development of additional genetic tools, specifically tailored to target NMDARs within distinct cellular populations in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826341PMC
http://dx.doi.org/10.1093/pnasnexus/pgaf041DOI Listing

Publication Analysis

Top Keywords

nmda receptors
8
hippocampal neurons
8
genetically encodable
8
synaptic
5
genetically encoded
4
encoded secreted
4
secreted toxin
4
toxin potentiates
4
potentiates synaptic
4
synaptic nmda
4

Similar Publications

IUPHAR Review - Novel therapeutic targets for schizophrenia treatment: a translational perspective.

Pharmacol Res

March 2025

Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy. Electronic address:

Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models.

View Article and Find Full Text PDF

Long-term potentiation (LTP) is proposed to be the molecular mechanism underlying learning and memory in the brain. A key event for LTP is the influx of calcium into post-synaptic neurons via multiple ion channel control systems. One such system involves N-methyl-D-aspartate receptors (NMDARs), which were originally believed to be essential for LTP and new learning.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles.

View Article and Find Full Text PDF

The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage.

View Article and Find Full Text PDF

Modulation of the human GlyT1 by clinical drugs and cholesterol.

Nat Commun

March 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Glycine transporter 1 (GlyT1) is a key player in shaping extracellular glutamatergic signaling processes and holds promise for treating cognitive impairments associated with schizophrenia by inhibiting its activity and thus enhancing the function of NMDA receptors. Despite its significant role in physiological and pharmacology, its modulation mechanism by clinical drugs and internal lipids remains elusive. Here, we determine cryo-EM structures of GlyT1 in its apo state and in complex with clinical trial drugs iclepertin and sarcosine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!