Bismuth oxyhalides (BiOX) exhibit limited sunlight absorption and utilization, presenting a challenge for their effectiveness in photocatalytic applications. This study draws inspiration from the sensitization effects of natural chlorophyll on semiconductor photocatalysts, achieving synthesis of chlorophyll-sensitized BiOX photocatalysts through a precipitation method. The photocatalytic activity of these materials was evaluated under blue light irradiation (410-420 nm LED) using Rhodamine B (RhB) as a model pollutant. Experimental results reveal that chlorophyll derived from effectively sensitized BiOX samples, changed them specific surface area, and surface potential, thereby enhancing RhB degradation efficiency. Among the as-prepared BiOX materials, BiOBr demonstrated the most pronounced improvement, achieving a 97.8% degradation rate for 20 mg per L RhB within 90 min after sensitization. Mechanistic investigations through free radical trapping experiments identified superoxide radicals (˙O ), photogenerated electrons (e) and holes (h) as the key reactive species driving RhB degradation. This study underscores the critical role of chlorophyll sensitization in improving the photocatalytic efficiency of BiOX and provides a comparative analysis of the photocatalytic performance of BiOCl, BiOBr, and BiOI. The findings offer valuable perspectives for the advancement and practical implementation of sensitized photocatalysts in environmental remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822768PMC
http://dx.doi.org/10.1039/d5ra00008dDOI Listing

Publication Analysis

Top Keywords

natural chlorophyll
8
photocatalytic performance
8
rhb degradation
8
photocatalytic
5
biox
5
modification bismuth
4
bismuth oxyhalide
4
photocatalysts
4
oxyhalide photocatalysts
4
photocatalysts natural
4

Similar Publications

Zinc is an essential trace element for plant growth and development. Zinc transporters play an important role in regulating zinc homeostasis in plants. In this study, the potato cultivar 'Atlantic' was used as experimental material to analyze the expression characteristics of the StZIP2 gene in different potato tissues under zinc deficiency stress.

View Article and Find Full Text PDF

The long-range transport of naturally occurring and anthropogenic aerosols originating from Asian deserts and megacities, respectively, can have a significant impact on the biogeochemical cycling of metals in the Fe-limited, high nutrient-low chlorophyll (HNLC) region of the northeast (NE) subarctic Pacific Ocean. These aerosols can deposit essential (e.g.

View Article and Find Full Text PDF

Salinity stress poses a significant threat to crop production due to rapid soil salinization as a consequence of climate change. Brinjal, a vital and resilient vegetable crop with extensive genetic variation, exhibits a diverse range of salt tolerance responses. Salt-tolerant and susceptible brinjal genotypes were assessed for their differential tolerance mechanisms under 8 dS m salinity.

View Article and Find Full Text PDF

Hydrological isolation accelerates algal blooms in floodplain lakes: Biomarker evidence from Dongting Lake, China and its satellite lake.

Water Res

March 2025

Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen, 6708 PB, the Netherlands; Department of Ecology and Biodiversity/Department of Physical Geography, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, the Netherlands.

Hydrological disconnection from main channels (either via natural siltation or due to construction of hydrological infrastructures) is modifying biogeochemical cycling in river-floodplain systems. Knowledge on how this process influences phytoplankton composition and harmful algal blooms (HABs) in floodplain lakes is quite scant due to the lack of long-term water quality monitoring and the concurrent influence of multiple drivers of change. Here, chlorophyll and carotenoid pigment biomarkers from dated sediment cores were analyzed from Dongting Lake (China's second largest freshwater lake) and one of its satellite lakes (Donghu) in the Yangtze floodplain, to evaluate the long-term influence of hydrological isolation on algal community composition and HABs.

View Article and Find Full Text PDF

Simultaneous Application of Methylene Blue and Chlorin e6 Photosensitizers: Investigation on a Cell Culture.

Sovrem Tekhnologii Med

March 2025

PhD, Senior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Associate Professor, Department 87 "Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine"; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia.

Unlabelled: The application of photosensitizers for inhibition of oxidative phosphorylation in order to temporally decrease oxygen uptake by tumor cells in the course of photodynamic therapy (PDT) evokes growing interest. is to overcome tumor hypoxia for further photodynamic therapy with simultaneous use of type I photosensitizer methylene blue (MB) and type II photosensitizer chlorin e6.

Material And Methods: A photodynamic activity of MB and its combined use with chlorin e6 has been studied on the HeLa cell culture, their effect on cell metabolism in their co-accumulation and subsequent irradiation has also been assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!